





#### UNIVERSITE D'ORLEANS ÉCOLE DOCTORALE SANTE, SCIENCES BIOLOGIQUES ET CHIMIE DU VIVANT INSTITUT DE CHIMIE ORGANIQUE ET ANALYTIQUE (ICOA) UNIVERSITE MOHAMMED V-AGDAL DE RABAT LABORATOIRE DE CHIMIE ORGANIQUE HETEROCYCLIQUE (LCOH)

## THÈSE EN COTUTELLE INTERNATIONALE présentée par :

#### Mohammed NAAS

Soutenu le: 10 Mai 2016

pour obtenir le grade de :

Docteur de l'Université d'Orléans Discipline : Chimie Organique

et de l'Université Mohammed V de Rabat Discipline : Chimie Organique, Pharmacochimie

# Synthèse et fonctionnalisation de nouveaux dérivés d'indazoles à visée thérapeutique

THÈSE dirigée par :

**Gérald GUILLAUMET** Professeur, Université d'Orléans

**EI Mokhtar ESSASSI** Professeur, Université Mohammed V de Rabat **Saïd EI KAZZOULI** Professeur, Université Euro-Méditerranéenne de Fès

**RAPPORTEURS:** 

Henri DOUCET Professeur, de Rennes 1

Mohamed AKSSIRA Professeur, Université Hassan II, Mohammedia-Casablanca

JURY

Vincent LEVACHER Directeur de recherche, Université de Rouen (Président du jury)

Henri DOUCET Directeur de recherche, Université de Rennes 1

Mohamed AKSSIRA Professeur, Université Hassan II, Mohammedia-Casablanca

**Gérald GUILLAUMET** Professeur, Université d'Orléans

**El Mokhtar ESSASSI** Professeur, Université Mohammed V de Rabat **Saïd El KAZZOULI** Professeur, Université Euro-Méditerranéenne de Fès

Ce travail a été réalisé au sein de l'Institut de Chimie Organique et Analytique (ICOA), à l'Université d'Orléans, sous la direction des Professeurs G. Guillaumet et E.M. Essassi, et S. El Kazzouli. Il s'inscrit dans le cadre de l'accord de cotutelle signé entre l'Université d'Orléans et l'Université Mohammed V-agdal de Rabat-Maroc.

En premier lieu, Je tiens à exprimer ma profonde reconnaissance au Professeur G. Guillaumet pour m'avoir accueilli au sein de son laboratoire et pour m'avoir permis de mener ce travail dans d'excellentes conditions. Je lui adresse également mes sincères remerciements pour son permanent soutien, sa grande disponibilité et pour les conseils qu'il m'a prodigués pendant ces trois années. Je tiens à lui témoigner mon plus grand respect.

Mes plus vifs remerciements s'adressent au Professeur E. M. Essassi à qui je suis particulièrement reconnaissant pour m'avoir donné cette opportunité et m'avoir ouvert le chemin sur lequel je suis aujourd'hui. Un grand merci du fond du coeur pour ses conseils qui m'ont été d'une aide précieuse, son important soutien moral, ses permanents encouragements.

Je tiens à exprimer ma grande gratitude au Professeur S. El Kazzouli pour les conseils qu'elle m'a prodigués, ainsi que la gentillesse, la confiance et le soutien qu'elle m'a toujours accordé, qu'elle trouve ici l'expression de mon plus grand respect.

Je tiens à exprimer ma respectueuse gratitude au Professeur V. LEVACHER et au Professeur H. DOUCET pour avoir aimablement accepté de juger ce travail et d'honorer de leur présence le jury de ma thèse.

Mes remerciements s'adressent également au Professeur Mohamed Akssira qui me fait l'honneur de siéger parmi les membres de mon jury.

Mes remerciements les plus chaleureux à mes frères et soeurs magrébins: Jabrane Jouha, Mohammed Loubidi, Mohammed Zaki, Aziz Ouach, Zahira Tber, Rabia Belaroussi, Ibtissam Bassoude, Raja Ben othmane, Mariem Alaoui Boukhriss, pour tous les moments agréables qu'on a passés ensembles.

Une pensée particulière aux membres de laboratoire 3 : Jabrane, Mathieu, Sandrine, Audrey.C, Jéremy, Audrey.M, Régis, Emmanuelle, Cosmin, Célia, Soukaina. Je leur dit merci pour toutes les discussions tant au niveau chimie que personnelles. Je ne saurai oublier : Pascal, Marie madeleine, Yann ainsi que tous les membres de l'ICOA (étudiants, chercheurs et professeurs) pour leur aimable synmphatie.

Finalement, je remercie du fond de cœur mes parents, mes frères, soeurs et toute ma famille pour le constant et précieux soutien moral et matériel qu'ils m'ont apporté pendant mes études. Le grand merci à tous ceux qui m'ont aidé, renseigné ou conseillé.

Aux sacrifices de mes chers "Rarents, mes frères et sœurs A ma famille, et à tous ceux qui me sont chers

| NTRODUCTION GENERALE                                                                                | 10 |
|-----------------------------------------------------------------------------------------------------|----|
| CHAPITRE I: Etude bibliographique                                                                   | 14 |
| - Etude bibliographique sur l'intérêt biologique, la synthèse et la réactivité de l'indazole        | 15 |
| I.1 Intérêt biologique des indazoles                                                                | 15 |
| I.1.1 Indazoles en tant que produits naturels                                                       | 15 |
| I.1.2 Principales activités pharmacologiques des indazoles                                          | 16 |
| I.2 – Synthèse et réactivité des indazoles                                                          | 24 |
| I.2.1- Principales méthodes de synthèse de l'indazole                                               | 24 |
| I.2.1.1 Synthèse des N-H indazoles                                                                  | 26 |
| I.2.1.1.A Synthèse du 3-carboxy-1 <i>H</i> -indazole à partir de l'isatine                          | 26 |
| I.2.1.1.B Synthèse des 1 <i>H</i> -indazoles à partir de l' <i>o</i> -toluidine                     | 27 |
| I.2.1.1.C Synthèse des 1 <i>H</i> -indazoles à partir d'o-halophénylalcan-1-ones                    | 27 |
| I.2.1.1.D Synthèse des 1 <i>H</i> -indazoles à partir d' <i>o</i> -fluorobenzonitriles              | 28 |
| I.2.1.1.E Synthèse des 1 <i>H</i> -indazoles par cycloaddition 1,3-dipolaire                        | 30 |
| I.2.1.1.F Synthèse de 1 <i>H</i> -indazoles par réaction de Baylis-Hillman                          | 30 |
| I.2.1.1.G Synthèse de 1 <i>H</i> -indazoles à partir d' <i>o</i> -nitrobenzaldéhydes                | 31 |
| I.2.1.2 Synthèses de composés 1 <i>H</i> –indazoles <i>N</i> -substitués                            | 32 |
| I.2.1.2.A Synthèse des 1 <i>H</i> -indazoles à partir d' <i>o</i> -halogénophénones                 | 32 |
| I.2.1.2.B Synthèse de 1 <i>H</i> -indazoles à partir d' <i>o</i> -hydroxybenzaldéhydes              | 34 |
| I.2.1.2.C Synthèse des 1 <i>H</i> -indazoles à partir d' <i>o</i> -aminobenzoximes                  | 35 |
| I.2.1.2.D Synthèse d'1 <i>H</i> -indazoles à partir du 1-méthyl-1 <i>H</i> -pyrazole-4-carbaldéhyde | 35 |
| I.2.1.3 Synthèses de 2 <i>H</i> -indazoles <i>N</i> -substitués                                     | 36 |
| I.2.1.3.A Synthèse des 2 <i>H</i> -indazoles à partir de l' <i>o</i> -nitrobenzaldéhyde             | 36 |
| I.2.1.3.B Synthèse de 2 <i>H</i> -indazoles à partir de dérivés de l'acide anthranilique            | 37 |
| I.2.1.3.C Synthèse de 2 <i>H</i> -indazoles à partir de cétosulfonamides                            | 38 |
| I.2.1.3.D Synthèse des 2 <i>H</i> -indazoles par réaction de Baylis-Hillman                         | 40 |
| I.2.1.3.E Synthèse des 2 <i>H</i> -indazoles à partir du 2-bromobenzaldéhyde                        | 40 |
| I.2.2- Réactivité des halogénoindazoles vis-à-vis des couplages métallo-catalysés                   | 40 |
| I. Etude de la réaction d'arylation où d'hétéroarylation directes sur divers hétérocycles           | 41 |
| II 1- Introduction                                                                                  | 42 |

| II.2- Mécanisme réactionnel                                                                                                       | 43 |
|-----------------------------------------------------------------------------------------------------------------------------------|----|
| II.3- Cas des indoles                                                                                                             | 44 |
| II.3.1- Arylation des indoles en position C-2                                                                                     | 44 |
| II.3.2- Arylation des indoles en position C-3                                                                                     | 47 |
| II.4- Cas des azaindoles                                                                                                          | 50 |
| II.5- Cas des imidazo[1,2-a]pyridines                                                                                             | 51 |
| II.6- Cas des imidazo[1,2-a]pyrimidines                                                                                           | 56 |
| II.7- Cas des imidazo [1,2-a] pyrazines                                                                                           | 58 |
| II.8- Cas des imidazo [1,2-b] pyridazines                                                                                         | 59 |
| II.9- Cas des pyrazolo[1,5-a]pyrimidines                                                                                          | 60 |
| II.10- Cas des imidazo [1,2-b] [1,2,4,5] tétrazines                                                                               | 60 |
| II.11- Cas des indolizines                                                                                                        | 61 |
| II.12- Cas des pyrrolo[1,2-a]pyrazines                                                                                            | 62 |
| II.13- Cas des benzothiadiazoles et benzotriazoles                                                                                | 63 |
| II.14- Cas des benzofuranes et benzothiophènes                                                                                    | 64 |
| II.14.1- Arylation en position 2                                                                                                  | 64 |
| II.14.2- Arylation en position 3                                                                                                  | 66 |
| III. Conclusion                                                                                                                   | 68 |
| CHAPITRE II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura                                                   | 69 |
| I. Introduction                                                                                                                   | 70 |
| II. Couplage de Suzuki-Miyaura régiosélectif en position 3 d'indazoles possédant un hydrogène sur l'azote situé en position 1     | 70 |
| II.1 Préparation des indazoles de départ                                                                                          | 70 |
| II-2 Synthèse d'indazoles bromés en position 3                                                                                    | 71 |
| III. Fonctionnalisation de l'indazole par couplage de type Suzuki-Miyaura                                                         | 73 |
| III.1 Rappel bibliographique sur le couplage de Suzuki-Miyaura                                                                    | 75 |
| III.2 Optimisation des conditions de couplage                                                                                     | 78 |
| III.3 Généralisation                                                                                                              | 80 |
| IV. Conclusion                                                                                                                    | 83 |
| CHAPITRE III: Réaction d'(hétéro)arylation régiosélective en position 3 des indazoles via des réactio catalysées par le palladium |    |
| I Introduction                                                                                                                    | 86 |

| II. Préparation des indazoles de départ : étape de N-méthylation ou N-arylation                                                                                                        | 86      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| III- Fonctionnalisation des indazoles en position 3 par réaction de CH-arylation                                                                                                       | 87      |
| III.1 Optimisation de la réaction d'arylation ou d'(hétéro)arylation sur le 1-méthylindazole                                                                                           | 89      |
| III.2 Mécanisme de la réaction d'arylation sur le 1-méthylindazole                                                                                                                     | 93      |
| III.3 Généralisation                                                                                                                                                                   | 94      |
| IV. Conclusion                                                                                                                                                                         | 98      |
| CHAPITRE IV: Réaction d'arylation directe en positions 3 et 7 d'indazoles                                                                                                              | 99      |
| I. Introduction                                                                                                                                                                        | 100     |
| II. Préparation des indazoles de départ : étape de la N-méthylation                                                                                                                    | 100     |
| III. Arylation directe en C3 et C7                                                                                                                                                     | 101     |
| III.1 Mise au point des conditions de la CH-arylation directe                                                                                                                          | 102     |
| III.2 Généralisation                                                                                                                                                                   | 108     |
| III.3 Mécanisme de la réaction d'arylation en position 7                                                                                                                               | 114     |
| III.4 Etude de l'incorporation de deutérium dans le composé 49a                                                                                                                        | 116     |
| III.5 Procédé « one pot » concernant la double arylation des indazoles N1-substitués                                                                                                   | 117     |
| IV. Conclusion                                                                                                                                                                         | 118     |
| CHAPITRE V: Alcènylations directes en positions 3 et 7 d'indazoles N-méthylés en position 1 ou des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole » |         |
| I.Introduction                                                                                                                                                                         | 121     |
| II. Etat de la littérature sur la réaction d'alcénylation directe pallado-catalysée                                                                                                    | 122     |
| III. Réaction d'alcénylation directe sur le sommet 3 des indazoles <i>N</i> -méthylés en position 2 <i>via</i> réactions catalysées par le palladium                                   |         |
| III.1 Préparation des 2 <i>H</i> -indazoles <i>N</i> -méthylés                                                                                                                         | 128     |
| III.2 Optimisation sur le 2-méthyl-2 <i>H</i> -indazole des conditions d'alcénylation directe en posit                                                                                 |         |
| III.3 Généralisation de la réaction d'alcénylation directe au départ de divers indazoles méthy                                                                                         |         |
| III.4 Mécanisme de la réaction d'alcénylation en position 3                                                                                                                            | 135     |
| IV. Application de la réaction d'alcénylation directe sur le 1-méthylindazole                                                                                                          | 136     |
| IV.1 Optimisation des conditions d'alcénylation directe en position 3 sur le 1-méthylindazole                                                                                          |         |
| IV.2 Généralisation                                                                                                                                                                    |         |
| V. Alcénylation directe en C7 du (F)-3-(1-méthyl-5-nitro-1H-indazole-3-yl) acrylate de cyclohex                                                                                        | 1/1 مار |

| VI. Extension de la réaction d'alcénylation directe en position 7 sur le 1-méthyl-3-phénylindazole.                | 141 |
|--------------------------------------------------------------------------------------------------------------------|-----|
| VII. Mécanisme réactionnel                                                                                         | 144 |
| VIII. Application de la réaction d'alcénylation directe pour la synthèse du « Gamendazole »                        | 145 |
| VIII.1 Intérêt biologique du Gamendazole et de ses analogues                                                       | 145 |
| VIII.2 Les différentes méthodes de synthèse du Gamendazole                                                         | 147 |
| VIII.3 Synthèse de l'acide 6-nitro-1-(2,4-dichlorobenzyl)-3-acrylique. Application à la préparation du Gamendazole |     |
| IX. Conclusion                                                                                                     | 150 |
| CHAPITRE VI: Synthèse de nouveaux dérivés d'indazoles possédant un motif sulfonamide                               | 152 |
| I. Introduction                                                                                                    | 153 |
| II. Etat de la littérature concernant les dérivés d'indazoles substitués par des motifs sulfonamides               | 155 |
| III. Synthèse de N-(indazolyl)-arylsulfonamides différemment substitués                                            | 157 |
| III.1 Préparation des produits de départ                                                                           | 157 |
| III.2 Synthèse des N-(indazolyl)-4-méthoxy-benzénesulfonamides                                                     | 159 |
| III-3 Résultats pharmacologiques                                                                                   | 164 |
| IV. Conclusion                                                                                                     | 164 |
| Conclusion Générale et Perspectives                                                                                | 165 |
| Partie expérimentale                                                                                               | 177 |
| Références hibliographiques                                                                                        | 215 |

#### **Abréviations**

#### **Abréviations**

MeCN Acetonitrile

DBU 1,8-diazabicyclo[5.4.0]undéc-7-ène

DCE Dichloroéthane

DCM Dichlorométhane

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DIC Diisopropyl carbodiimide

DME Diméthoxyéthane

Dppf 1,1-bis(Diphénylphosphino)ferrocène

EDC 1-Ethyl-3-(3-diméthylaminopropyl)carbodiimide Hydrochloride

ER  $\beta$  Récepteur Estrogène  $\beta$ 

HOBt *N*-Hydroxybenzotriazole

IC<sub>50</sub> Concentration inhibitrice

JAK-2 Janus kinase 2

LDA Lithium diisopropylamidine

NMP *N*-Méthyl-2-pyrrolidone

2-Nos 2-Nitrobenzènesulfonyl

Pd(dba)<sub>2</sub> bis-(Dibenzylideneacetone)palladium

PMB 4-Méthoxybenzyl

Py Pyridine

SEM 2-(Triméthylsilyl)éthoxyméthyl

TBAF Fluorure de tétrabutylammonium

TEA Triethylamine

AcOH Acide acétique

AcOEt Acétate d'éthyle

*n*-BuOH *n*-butanol

Cu(OAc)<sub>2</sub> Acétate de cuivre (II)

DMF Diméthylformamide

DMSO Diméthylsulfoxyde

EP Ether de Pétrole

EtOH Ethanol

Et<sub>3</sub>N Triéthylamine

éq Equivalent

#### Abréviations

HRMS Spectroscopie de masse à haute résolution

IR Infrarouge

J Constante de couplage

MeOH Méthanol

MW Micro-onde

PdCl<sub>2</sub>(dppf)<sub>2</sub> 1,1'- bis (diphénylphosphino)ferrocène]dichloropalladium

PivOH Acide pivalique

Rdt Rendement

T.A Température ambiante

TBAB Bromure de tétrabutylammonium

TFA Acide trifluoroacétique

THF Tétrahydrofurane

TCB 1,2,4-Trichlorobenzène

TrCl Chlorure de trityle

δ Déplacement chimique

(Hét)Ar Hétéroaromatique

Hz Hertz

K<sub>2</sub>CO<sub>3</sub> Carbonate de potassiumMgSO<sub>4</sub> Sulfate de magnésium

Min Minute H Heure Introduction générale

INTRODUCTION GENERALE

#### Introduction générale

La chimie hétérocyclique a connu un essor considérable grâce à l'importance pharmacologique que présente la majorité des composés hétérocycliques, notamment les hétérocycles azotés qui constituent la source privilégiée de nombreux sujets de recherche au laboratoire. Dans cette optique, notre groupe développe depuis de nombreuses années des méthodes de synthèse s'appuyant sur la catalyse par les complexes métalliques, avec un double objectif: 1) l'élaboration de nouveaux hétérocycles polyfonctionnalisés 2) leur application à la synthèse de molécules d'intérêt biologique. L'essentiel de mon travail de thèse s'inscrit dans ce cadre, avec comme cible principale l'utilisation de réactions métallocatalysées régiosélectives, ainsi que l'élaboration de nouveaux composés hétérocycliques azotés possédant des motifs sulfonamides.

Le manuscrit proposé se divise en six chapitres distincts:

Dans le premier chapitre dédié aux travaux de la littérature, nous montrerons l'importance pharmacologique du noyau indazole, les différentes voies de synthèse de ces dérivés ainsi que leur réactivité. Puis, nous passerons en revue les applications récentes des réactions d'arylations intermoléculaires directes réalisées sur différents hétérocycles.

Dans le second chapitre, nous développerons une nouvelle stratégie efficace et rapide pour fonctionnaliser la position 3 des indazoles possédant la fonction NH libre, *via* des réactions pallado-catalysées de type Suzuki-Miyaura (schéma 1).

#### Schéma 1

Le troisième chapitre sera consacré à l'étude et à l'application sur les indazoles *N*-substitués des réactions d'arylations et d'hétéroarylations en position 3 catalysées par le palladium (schéma 2).

$$N + R_2 - X$$
 Pd, Ligand base, solvant  $R_1$ 

#### Schéma 2

Dans le quatrième chapitre, nous décrirons une méthode que nous avons mise au point concernant les réactions d'arylations et d'hétéroarylations catalysées par le palladium au

#### Introduction générale

départ d'indazoles substitués. Nous avons ainsi développé le premier exemple d'arylation directe régiosélective en C7 d'1*H*-indazoles déjà substitués en position 3 et contenant des groupes éléctro-attracteurs sur le noyau benzénique. Les conditions optimales de la réaction ont permis la préparation de divers indazoles arylés en C7. Nous présenterons également la possibilité d'accéder aux composés disubstitués indazoliques en une seule étape selon une procédure "one-pot", mettant en jeu un couplage de Suzuki en position 3 suivi d'une réaction d'arylation en position 7 (schéma 3).

Schéma 3

Au cours du cinquième chapitre, nous développerons, dans un premier temps, une nouvelle réaction d'alcènylation directe pallado-catalysée de (2H)- et (1H)-indazoles ainsi que l'alcénylation en C7 d'(1H)-indazoles. Dans un second temps, nous présenterons une synthèse en trois étapes d'un composé modèle puis l'application de la méthodologie mise au point à l'élaboration du Gamendazole, en utilisant l'alcénylation directe en C3 d'(1H)-indazoles convenablement fonctionnalisés (schéma 4).

Schéma 4

$$G = R$$

$$C3-alcénylation$$

$$G = R$$

$$G = R$$

$$C7-alcénylation$$

$$R' = Ph ou$$

$$EWG$$

$$R$$

$$Gamendazole$$

$$Gamendazole$$

$$Gamendazole$$

Schéma 5

Pour finaliser ce travail, le sixième chapitre sera réservé à la synthèse de composés à structure indazolique contenant une fonction sulfonamide afin de générer des librairies de dérivés substitués possédant un tel motif et ce, dans le but de les tester biologiquement sur des cellules tumorales de la lignée cellulaire murine L1210 (leucémie) et des lignées cellulaires humaines DU145 (carcinome prostatique), HCT116 (carcinome du côlon) et HT29 (adénocarcinome du côlon) (Figure 1).

Figure 1

# CHAPITRE I Etude bibliographique

Dans ce chapitre, il nous a semblé, dans un premier temps, intéressant de résumer les propriétés pharmacologiques et chimiques des indazoles. Dans un deuxième temps, nous rappellerons brièvement l'intérêt aussi bien synthétique que mécanistique des réactions d'arylations directes avec la volonté de mettre en évidence les paramètres influençant cette réaction et ce, à partir des donnés décrites dans la littérature sur différents hétérocycles.

# I- Etude bibliographique sur l'intérêt biologique, la synthèse et la réactivité de l'indazole

#### I.1 Intérêt biologique des indazoles

Le terme indazole a été défini la première fois par le scientifique Emil Fisher comme « un noyau pyrazole fusionné avec le noyau de benzène ». L'indazole, largement étudié vu ses intéressantes propriétés chimiques et biologiques, appartient à la famille des azoles, molécules contenant des atomes de carbone, d'hydrogène et d'azote. Les indazoles, également appelés benzopyrazoles ou isoindazolones, appartiennent aux systèmes aromatiques possédant 10 électrons  $\pi$ .

#### I.1.1 Indazoles en tant que produits naturels

La Nigellicine, la Nigeglanine et la Nigellidine, entités possèdant une structure indazolique, sont des alcaloïdes naturels (figure 2). Le premier membre de cette famille la Nigellicine, a été isolé en 1985 à partir de la plante *Nigella sativa*, plante à fleurs annuelles originaire d'Asie du Sud-Ouest. Les graines de cette plante ont été utilisées depuis des milliers d'années dans l'alimentation comme épice et pour le traitement de diverses maladies 2,3,4 telles que l'arthrite, les troubles gynécologiques, l'hypercholestérolémie, les rhumes et les inflammations. La Nigeglanine et la Nigellidine ont été isolées à partir d'extraits de *Nigella glandulifera* et de *N. sativa*. A noter que ces trois composés pouvent également être représentés sous leurs formes zwittérioniques (figure 2).

<sup>&</sup>lt;sup>1</sup> Y. M. Liu, J.S. Yang, Q.U. Liu, Chem. Pharm. Bull. 2004, 52, 454.

<sup>&</sup>lt;sup>2</sup> E. A. I. Barakat, U. A. Fatma, *J. Ethnopharmacol.* **2003**, 89, 193.

<sup>&</sup>lt;sup>3</sup> M. Eddouks, M. Maghrani, A. Lemhadri, M.L. Quahidi, H. Jouad, J. Ethnopharmacol. 2002, 82, 97.

<sup>&</sup>lt;sup>4</sup> O. Said, K. Khali, S. Fulder, H. Azaizeh, J. Ethnopharmacol. 2002, 83, 251.

<sup>&</sup>lt;sup>5</sup> R. Attaur, S. Malik, S. S. Hasan, M. I. Choudharry, C. Z. Ni, J. Clardy, *Tetrahedron Lett.* **1995**, *36*, 1993.

Figure 2

#### I.1.2 Principales activités pharmacologiques des indazoles

Les dérivés d'indazoles sont pharmacologiquement importants car constituant la structure de base de plusieurs médicaments, tels que le Granisetron (composé **L1**, figure 3) antagoniste du récepteur 5HT<sub>3</sub> utilisé comme antiémétique en chimiothérapie, <sup>6,7,8</sup> ou la Benzydamine (composé **L2**, figure 3), qui est un agent anti-inflammatoire. <sup>9</sup> A noter que le Granisetron existe également sous forme de médicament générique commercialisé sous le nom de **Kytril**®.

Sachant que la majeure partie des médicaments commerciaux sont des hétérocycles possédant un ou plusieurs atomes d'azote, <sup>10</sup> de nombreux chimistes, académiques ou industriels ont commencé à développer différentes méthodes pour la synthèse de ces hétérocycles. <sup>11,12,13,14</sup>

Figure 3

<sup>&</sup>lt;sup>6</sup> a) P.I. Hesketh, D.R. Gandara, J. Natl. *Cancer Inst.* **1991**, *83*, 613. b) M. Nakane, Clin. *Chem. Lab. Med.* **2003**, *41*, 865.

<sup>&</sup>lt;sup>7</sup> Pan Li, Chunrui Wu, Jingjing Zhao, Donald C. Rogness, Feng Shi, J. Org. Chem. **2012**, 77, 3149.

<sup>&</sup>lt;sup>8</sup> Christian Spiteri, Steve Keeling, John E. Moses, *Org. Lett.* **2010**, *12*, 3368.

<sup>&</sup>lt;sup>9</sup> M. Sironi, L. Massimiliano, P. Transidico, M. Pinza, S. Sozzani, A. Mantovani, A. vecchi, *Int. J. Clin. Lab. Res.* **2000**, *30*, 17.

<sup>&</sup>lt;sup>10</sup> A. D. Mills, M. Z. Nazer, M. J. Haddadin, M. J. Kurth, J. Org. Chem. **2006**, 71, 2687.

<sup>&</sup>lt;sup>11</sup> T. Zhang, W. Bao, J. Org. Chem. 2013, 78, 1317.

<sup>&</sup>lt;sup>12</sup> M. R. Kumar, A. Park, S. Lee, *Org. Lett.* **2011**, *13*, 3543.

<sup>&</sup>lt;sup>13</sup> N. Cankařováa, J. Hlaváča, V. Krchňákb, Org. Prep. Proced. Int. 2010, 42, 433.

<sup>&</sup>lt;sup>14</sup> D. D. Gaikwad, A. D. Chapolikar, C. G. Devkate, K. D. Warad, A. P. Tayade, R. P. Pawar, A. J. Domb, *Eur. J. Med. Chem.* **2015**, *90*, 707.

Parmi les différents composés décrits possédant l'entité indazole, nous pouvons citer le Bendazac L3 (figure 4) qui est un agent anti-inflammatoire non stéroïdien utilisé pour le traitement topique de l'inflammation ainsi que celui des douleurs musculaires et articulaires. <sup>15</sup> Un dérivé d'indazole YC-1 L4 (figure 4) a été synthétisé et évalué pour son activité de transcription HIF-1 in vivo (régulateur central de l'hypoxie). <sup>16</sup> En outre, ces dérivés, montrent une activité antiproliférative contre les cellules cancéreuses humaines. D'autre part, l'indazole 1,3,5-trisubstitué L5 (figure 4) est décrit comme un antioxydant extrêmement efficace. <sup>17</sup> Récemment, l'utilisation de la lonidamine L6 (figure 4) en combinaison avec la radiothérapie a montré des propriétés antitumorales en phase II, d'où son passage en phase III pour le traitement du cancer du sein, du cancer des ovaires et de celui du poumon. <sup>18</sup> Le 7-nitroindazole L7 (figure 4) a été examiné pour ces propriétés antioxydantes. <sup>19</sup> De même, le dérivé pipéridinique indazole L8 (figure 4) a été trouvé comme possédant des propriétés analgésiques et antipsychotiques. <sup>20</sup>

\_

<sup>&</sup>lt;sup>15</sup> H. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran, Ocariz C. Ochoa de, *Mini. Rev. Med. Chem.* **2005**, *5*, 869.

<sup>&</sup>lt;sup>16</sup> A. Takeuchi, M. Hori, S. Sato, H. S. Ban, T. Kuchimaru, S. Kizaka-Kondoh, T. Yamori, H. Nakamura, *Med. Chem. Commun.* **2012**, *3*, 1455.

<sup>&</sup>lt;sup>17</sup> S. Brian, R. K. Brown, J. P. Richard, D. Stanley, R. K. John, K. J. Tammie, M. H. Steven, A. M. Heath, R. B. Bruce, P. S. P. Honore, R. B. M. Puttfarcken, C. M. Kennan, R. F. Connie, L. Chih-Hung, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3291.

<sup>&</sup>lt;sup>18</sup> S. Di Cosimo, G. Ferretti, P. Papaldo, P. Carlini, A. Fabi, F. Cognetti, *Drugs Today Barc.* **2003**, *39*, 157.

<sup>&</sup>lt;sup>19</sup> S. S. Matthew, J. S. Mitchell, *Org. Biomol. Chem.* **2004**, 2, 2551.

<sup>&</sup>lt;sup>20</sup> K.W. Locke, R.W. Dunn, J. W. Hubbard, C. L. Vanselous, M. Cornfeldt, F. Stuart, J. T. Strupczewski, *Drug Dev. Res.* **1990**, *19*, 239.




Figure 4

Lors de leurs travaux, Souers et *al.*<sup>21</sup> ont développé des antagonistes du récepteur hormonal de la mélanine (composé **L9**, figure 5)<sup>21a</sup>, qui est connu pour avoir un certain nombre de fonctions biologiques impliquées dans la régulation de l'appétit, ainsi qu'une structure à base d'urée (composé **L10**, figure 5).<sup>21b</sup> Plusieurs composés ont montré une activité antagoniste MCHr1 (récepteur hormonal de mélano-concentration de type 1). Cette enzyme fait l'objet de diverses études, car intervenant dans de nombreux processus biologiques, avec, entre autres, un rôle primordial dans le traitement de l'obésité, du diabète de type II, du syndrome métabolique, des troubles psychiatriques, des troubles de la mémoire et de la schizophrénie. A noter également qu'un dérivé d'urée substitué par des motifs

\_

<sup>&</sup>lt;sup>21</sup> a) A. J. Souers, J. Gao, M. Brune, F. Bush, D. Wodka, A. Vasudevan, A. S. Judd, M. Mulhern, S. Brodjian, B. Dayton, R. Shapiro, L. E. Hernandez, K. C. Marsh, H. L. Sham, C. A. Collins, P. R. Kym, *J. Med. Chem.* **2005**, 48, 1318. b) A. J. Souers, J. Gao, D. Wodka, A. S. Judd, M. M. Mulhern, J. J. Napier, M. E. Brune, E. N. Bush, S. J. Brodjian, B. D. Dayton, R. Shapiro, L. E. Hernandez, K. C. Marsh, H. L. Sham, C. A. Collins, P. R. Kym, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2752.

indazolyles (composé **L11**, figure 5)<sup>21a</sup> est un inhibiteur extrêmement efficace de la protéase du VIH, les études de modélisation moléculaire soulignant l'importance des atomes d'azote de l'indazole<sup>22,23,24</sup> comme donneur de liaisons hydrogènes.

Figure 5

Les travaux de Kawakubo et *al.*<sup>25</sup> (composé **L12**, figure 6), de Schenone et *al.*<sup>26</sup> (composé **L13**, figure 6), de Rosati et *al.*<sup>27</sup> (composé **L14**, figure 6) ont tous révélé l'intérêt de ces hétérocycles comme agents anti-inflammatoires.

Figure 6

Par ailleurs, l'équipe de Lee<sup>28</sup> a synthétisé les dérivés 3-(4-tolyl)-2*H*-indazoliques (composés **L15**, **L16**, figure 7) *N2*-substitués qu'ils ont ensuite évalués pour leurs activités anti-angiogéniques. Parmi les composés testés, le 2-(4-chlorobenzyl)-3-(4-méthylphényl)-2*H*-indazole, le 2-(4-méthylbenzyl)-3-(4-méthylphényl)-2*H*-indazole et le 2-(4-méthoxylbenzyl)-

<sup>&</sup>lt;sup>22</sup> J. H. Sun, C. A. Teleha, J. S. Yan, J. D. Rodgers, D. A. Nugiel, J. Org. Chem. **1997**, 62, 5627.

<sup>&</sup>lt;sup>23</sup> M. Patel, J. D. Rodgers, R. J. McHugh Jr., B. L. Johnson, B. C. Cordova, R. M. Klabe, L. T. Bacheler, S. E. Viitanen, S. S. Ko, *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3217.

<sup>&</sup>lt;sup>24</sup> C. Dell'Erba, M. Novi, G. Petrillo, C. Tavani, *Tetrahedron* **1992**, 48, 325.

<sup>&</sup>lt;sup>25</sup> H. Kawakubo, T. Sone, K. Wakigawa, T. Narita, J. Pharmaceut. Soc. Jap. 1987, 107, 28.

<sup>&</sup>lt;sup>26</sup> L. Mosti, G. Menozzi, P. Schenone, L. Molinario, F. Conte, C. Montanario, E. Marmo, *Il Farmaco - Ed.Sc*, **1988**, *43*, 10.

<sup>&</sup>lt;sup>27</sup> O. Rosati, M. Curini, M. C. Marcotullio, A. Macchiarulo, M. Perfume, L. Mattioli, F. Rismondo, G. Cravotto, *Bioorg. Med. Chem.* **2007**, *15*, 3463.

<sup>&</sup>lt;sup>28</sup> L. J. Huang, M. L. Shih, H. S. Chen, S. L. Pan, C. M. Teng, F. Y. Lee, S. C. Kuo, *Bioorg. Med. Chem.* **2006**, *14*, 528.

3-(4-méthylphényl)-2*H*-indazole ont montré une activité anti-angiogénique significative, les rendant dignes d'un examen plus approfondi.

Figure 7

M. Bai et ses collaborateurs<sup>29</sup> ont élaboré des dérivés d'indazoles (composés **L17**, **L18**, figure 8) comme antagonistes potentiels des récepteurs de glucocorticoïdes. Les tests biologiques ont révélé pour ces composés une affinité nanomolaire vis-à-vis des récepteurs en question.

Figure 8

Les études de R. Brown et ses collaborateurs<sup>30</sup> ont mené à la découverte du composé **L19** (figure 9) qui s'est révélé un antagoniste potentiel du récepteur de la capsaicine TRPV1, d'où son importante activité analgésique.

<sup>&</sup>lt;sup>29</sup> M. Bai, G. Carr, R. J. DeOrazio, T. D. Friedrich, S. Dobritsa, K. Fitzpatrick, P. R. Guzzo, D. B. Kitchen, M. A. Lynch, D. Peace, M. Sajad, A. Usyatinsky, M. A. Wolf, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3017.

<sup>&</sup>lt;sup>30</sup> S. Brian, R. K. Brown, J. P. Richard, D. Stanley, R. K. John, K. J. Tammie, M. H. Steven, A. M. Heath, R. B. Bruce, P. S. P. Honore, R. B. M. Puttfarcken, C. M. Kennan, R. F. Connie, L. C. Hung, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3291.

Figure 9

La même année, P. Salvatore et ses collaborateurs<sup>31</sup> ont décrit un nouveau dérivé d'indazole en l'occurrence la 3-(1-éthyl-1*H*-indazol-3-yl)-2-phénylquinazolin-4(3*H*)-one **L20** (figure 10). Ce composé fait preuve d'une activité antiproliférative modérée et d'un certain pouvoir anti-inflammatoire grâce à l'inhibition de COX-1 et COX-2.

Figure 10

Nous pouvons aussi citer la synthèse du (5-pyridinon-1-yl) indazole (composé **L21**, figure 11) et du (5-furopyridinon-5-yl) indazole (composé **L22**, figure 11) en tant qu'antagonistes efficaces de MCH-1 impliqués dans les phénomènes d'obésité et d'hyperphagie. <sup>32</sup>

$$\begin{array}{c|c} O & & & & \\ O & & & & \\ N & & & & \\ \hline \\ L21 & & & \\ \end{array}$$

Figure 11

<sup>&</sup>lt;sup>31</sup> P. Salvatore, R. Demetrio, P. Fabiana, C. Giovanni, M. Benedetta, D. Giuseppe, Maria, R. Valeria, G. C. Maria, B. Gabriella, M. Fiorella, *ARKIVOC*. **2010**, *10*, 163.

<sup>&</sup>lt;sup>32</sup> M. D. Surman, E. E. Freeman, J. F. Grabowski, M. Hadden, A. J. Henderson, G. Jiang, X. Jiang, M. Luche, Y. Khmelnitsky, S. Vickers, J. Viggers, S. Cheetham, P. R. Guzzo, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 7015.

En 2011, Hu et  $al.^{33}$  ont découvert le composé (**L23**, figure 12) qui s'est avéré un inhibiteur de la kinase TPL2 (Tumor Progression Locus 2 : protéine kinase de sérine-thréonine,  $IC_{50} = 3.2 \mu M$ ) utilisable dans le traitement de la polyarthrite rhumatoïde.

Figure 12

Récemment, Young-Ger Suh et *al.*<sup>34</sup> ont révélé l'importance des indazoles disubstitués en positions 1 et 3 (voir un exemple figure 13) comme nouveaux inhibiteurs HIF-1 (régulateur central de l'hypoxie). Ce facteur transcriptionnel coordonne l'induction de plusieurs gènes (stimulation de l'angiogenèse, de l'érythropoïèse et de la glycolyse anaérobie, par exemple) qui concourent à compenser la rareté d'oxygène.

Figure 13

Par ailleurs l'équipe de Fraley<sup>35</sup> a rapporté une classe d'inhibiteurs de la kinase Chek1 (Checkpoint kinase 1 : protéine kinase spécifique de la sérine / thréonine) à structure indazolique (**L25**, figure 14).

<sup>&</sup>lt;sup>33</sup> Y. Hu, D. Cole, R. A. Denny, D. R. Anderson, M. Ipek, Y. Ni, X. Wang, S. Thaisrivongs, T. Chamberlain, J. P. Hall, J. Liu, M. Luong, L. L. Lin, J. B. Telliez, A. Gopalsam, *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4758.

<sup>&</sup>lt;sup>34</sup> H. An, N. J. Kim, J. W. Jung, H. Jang, J. W. Park, Y. G. Suh, *Bioorg. Med. Chem. Lett.* **2011**, 21, 6297.

<sup>&</sup>lt;sup>35</sup> M. E. Fraley, J. T. Steen, E. J. Brnardic, K. L. Arrington, K. L. Spencer, B. A. Hanney, Y. Kim, G. D. Hartman, S. M. Stirdivant, B. A. Drakas, K. Rickert, E. S. Walsh, K. Hamilton, C. A. Buser, J. Hardwick, W. Tao, S. C. Beck, X. Mao, R. B. Lobell, L. Sepp-Lorenzino, Y. Yan, M. Ikuta, S. K. Munshi, L. C. Kuoc, C. Kreatsoulas, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 6049.

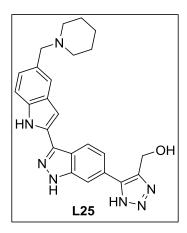



Figure 14

Le motif 3-benzimidazol-2-yl-1H-indazole (**L26**, figure 15) a été, pour son fait, développé par Shafer et al. <sup>36</sup> en tant qu'inhibiteur du récepteur de la tyrosine kinase.

Figure 15

Dans un travail récemment publié, Barraja et *coll.*<sup>37</sup> ont révélé l'intérêt des [1,2] oxazolo [5,4-e] indazoles (**L27**, figure 16) comme inhibitreurs de la prolifération des cellules tumorales humaines, ces composés se révélant généralement actifs à des concentrations micromolaires.

Figure 16

<sup>&</sup>lt;sup>36</sup> C. M. McBride, P. A. Renhowe, T. G. Gesner, J. M. Jansen, J. Lin, S. Ma, Y. Zhou, C. M. Shafer, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3789.

<sup>&</sup>lt;sup>37</sup> P. Barraja, V. Spano, D. Giallombardo, P. Diana, A. Montalbano, A. Carbone, B. Parrino, G. Cirrincione, *Tetrahedron* **2013**, *69*, 6474.

#### I.2 – Synthèse et réactivité des indazoles

Les indazoles polyfonctionnalisés présentent des activités biologiques intéressantes et variées. Par conséquent, de nombreuses méthodologies de synthèse ont été développées afin d'accéder à ces nouvelles familles de molécules.

#### I.2.1- Principales méthodes de synthèse de l'indazole

Les indazoles peuvent exister sous trois formes tautomères (figure 17). Suite aux calculs des énergies de tautomérie entre les formes 1H et 2H, divers auteurs ont conclu que le tautomère 1H est énergétiquement plus stable que le tautomère 2H, les 3H 2-indazoles s'avérant rares.  $^{13}$ 

Figure 17

Une étude approfondie de la littérature fait état de trois grandes voies d'accès aux indazoles:

- Elaboration de voies de synthèses conduisant à des indazoles possédant une liaison N-H (NH-indazoles) (schéma 6).
- ➤ Synthèse de N-alkyle/aryle 1*H*-indazoles (N-R 1*H*-indazoles) avec introduction directe du substituant sur l'azote pendant la synthèse du noyau indazolique (schéma 7).
- ➤ Préparation de N-alkyl/aryle 2*H*-indazoles (N-R 2*H*-indazoles) et ce, selon une procédure similaire à celle décrite précédemment. (schéma 8).

Quelle que soit la structure de la cible finale, le cycle à cinq chaînons pyrazolique est classiquement formé à partir de dérivés benzèniques 1,2-disubstitués. Deux approches pour la synthèse de N-alkyle/aryle 1*H*-2*H*-indazoles sont fréquemment rapportées dans la littérature. La première est basée sur la synthèse d'indazoles non substitués sur l'azote, suivie de la N-alkylation. La seconde voie est basée sur l'introduction du substituant sur l'azote lors de la synthèse du noyau pentagonal de l'indazole.

Schéma 7

Chacune de ces voies d'accès va être détaillée dans la suite du chapitre.

#### I.2.1.1 Synthèse des N-H indazoles

#### I.2.1.1.A Synthèse du 3-carboxy-1*H*-indazole à partir de l'isatine

La synthèse des indazoles à partir de l'isatine a été mise en œuvre pour la première fois en 1952. La séquence réactionnelle implique l'hydrolyse de l'isatine en acide aminophénylglyoxylique **L32**, suivie d'une diazotation puis d'une réduction en hydrazine intermédiaire **L34**, qui, après cyclisation, conduit au produit recherché **L35** (schéma 9). 38

-

<sup>&</sup>lt;sup>38</sup> H. R. Snyder, C. B. Thompson, R. L. Hinman, *J. Am. Chem. Soc.* **1952**, *74*, 2009.

#### Schéma 9

#### I.2.1.1.B Synthèse des 1*H*-indazoles à partir de l'o-toluidine

Les synthèses utilisant l'o-toluidine comme réactif de départ ont été décrites à plusieurs reprises. La réaction est basée sur la diazotation d'un groupe amino suivie d'un couplage avec le groupe méthyle situé en position *ortho*. La diazotation est réalisée dans l'acide acétique à température ambiante. A noter que les rendements obtenus pour le 4-nitro et le 5-méthoxy-1*H*-indazole **L38** sont excellents. 13

$$R_{1} \stackrel{\text{II}}{ \sqcup } \begin{array}{c} \text{CH}_{3} \\ \text{NH}_{2} \end{array} \xrightarrow{\text{NaNO}_{2}, \text{ AcOH, rt}} \begin{array}{c} \text{R}_{1} \stackrel{\text{II}}{ \sqcup } \\ \text{TEA (si R}_{1} = 4\text{-OCH}_{3}) \end{array} \xrightarrow{R_{1} \stackrel{\text{II}}{ \sqcup }} \begin{array}{c} \text{N} \\ \text{L37 H} \end{array}$$

#### Schéma 10

Rault et son équipe<sup>39</sup> ont rapporté au départ des *o*-toluidines **L39** une approche intéressante des halogéno-1*H*-indazoles substitués sur différentes positions du noyau benzénique. Les amines aromatiques mises en jeu sont converties en tétrafluoroborates de *o*-méthylbenzènediazonium **L40**, qui subissent une cyclisation en présence d'éther 18-couronne-6 pour former les indazoles appropriés **L41** (Schéma 11).

Schéma 11

#### I.2.1.1.C Synthèse des 1*H*-indazoles à partir d'o-halophénylalcan-1-ones

<sup>&</sup>lt;sup>39</sup> M. Boulouard, P. S. Bard, S. B. Gueulle, E. Lohou, S. Stiebing, V. Collot, S. Rault, *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3177.

Cette approche est fréquemment utilisée pour la synthèse à partir d'o-halobenzaldéhydes d'indazoles dont le N-1 ne porte pas de substituant et ce, par deux méthodes.

La méthode (A) consiste à faire réagir l'o-fluorobenzaldéhyde avec un excès d'hydrazine à reflux dans le diméthoxyéthane (DME) pendant 15 heures ce qui permet la formation du produit **L44** après substitution nucléophile aromatique et départ d'une molécule d'eau. La méthode (B) est basée sur le chauffage de l'o-fluorobenzaldéhyde avec le chlorhydrate d'o-méthylhydroxylamine en présence de carbonate de potassium dans le DME. Après 4 à 5 heures, le mélange réactionnel contenant l'o-méthyloxime intermédiaire peut être concentré puis chauffé à reflux avec un excès d'hydrazine anhydre pendant 5 à 25 heures. Les rendements sont généralement plus élevés dans des solvants éthérés tels que le THF, le DME voire le dioxane.

Un des inconvénients de la méthode (A) réside dans la réduction parasite de Wolff-Kishner conduisant à l'o-fluorotoluène **L45** (Schéma 12). Cette réaction indésirable est favorisée par l'utilisation de bases plus fortes que le bicarbonate de sodium.

Les rendements globaux en 1*H*-indazoles **L44** formés par la méthode (A) sont compris entre 47 et 82%, à l'exception des *o*-fluorobenzaldéhydes portant des groupes donneurs d'électrons en position 5 et de l'*o*-fluorobenzaldéhyde non substitué. Dans ces cas, les rendements sont seulement de 0-45%. Les rendements en 1*H*-indazoles générés selon la méthode (B) sont de l'ordre de 69-94% à l'exception de l'*o*-fluorobenzaldéhyde portant un groupement méthoxy en position 6 puisque dans ce cas le rendement n'excède pas 5%.

Schéma 12

#### I.2.1.1.D Synthèse des 1*H*-indazoles à partir d'o-fluorobenzonitriles

En 2005, Souers et ses collaborateurs ont réalisé une synthèse des 3-amino-1*H*-indazoles **L52** substitués sur le sommet 5 par condensation de l'hydrate d'hydrazine à reflux sur l'o-fluorobenzonitrile **L51**, lui-même déjà substitué en position 5 (Schéma 13). <sup>21b</sup>

#### Schéma 13

Plus tard, des conditions similaires ont été utilisées pour la synthèse du tétrafluoro 3-amino-1*H*-indazole **L54** à partir du pentafluorobenzonitrile **L53** (Schéma 14).<sup>40</sup>

#### Schéma 14

Une approche semblable pour élaborer le 3-amino-1*H*-indazole **L59** a été décrite par Antonysamy et *al.*<sup>41</sup> lors de la synthèse d'inhibiteurs de la tyrosine kinase (JAK-2). Le 3-amino-1*H*-indazole **L58**, une fois préparé selon le schéma réactionnel proposé ci-dessous (Schéma 15), subit un couplage de Suzuki, ce qui permet l'obtention du produit souhaité avec un bon rendement.

Schéma 15

<sup>41</sup> S. Antonysamy, G. Hirst, F. Park, P. Sprengeler, F. Stappenbeck, R. Steensma, M. Wilson, M. Wong, *Bioorg. Med. Chem. Lett.* **2009**, *19*, 279.

<sup>&</sup>lt;sup>40</sup> A. P. Piccionello, A. Pace, I. Pibiri, S. Buscemi, N. Vivona, *Tetrahedron.* **2006**, 62, 8792.

#### I.2.1.1.E Synthèse des 1*H*-indazoles par cycloaddition 1,3-dipolaire

Un mode opératoire général pour la synthèse des 1*H*-indazoles soit non substitué sur l'azote 1, soit portant un motif aryle sur ce même azote a été développé par Jin et *al*. <sup>42</sup> *via* la cycloaddition 1,3-dipolaire entre divers composés diazotés et des arynes générés *in situ* à partir d'*o*-(triméthylsilyl) triflates d'aryle commercialement disponibles. En fonction des conditions opératoires utilisées, la synthèse des deux produits **L61** et **L62** est possible (Schéma 16).

#### Schéma 16

Une large gamme de 1*H*-indazoles a été préparée par cycloaddition [3+2] des composés diazotés avec des *o*-(triméthylsilyl) triflates d'aryle **L63** en présence de fluorure de césium (CsF) ou de fluorure de tétra-*N*-butylammonium (TBAF) à température ambiante<sup>43</sup> (Schéma 17). La cycloaddition des dérivés de diazométhane monosubstitués aboutit au mélange des 1*H*-indazoles **L64** et **L65**, alors que l'utilisation du composé diazoïque dicarbonylé donne uniquement le 1*H*-indazole 1,3-disubstitué **L66** (schéma 17).

#### Schéma 17

#### I.2.1.1.F Synthèse de 1*H*-indazoles par réaction de Baylis-Hillman

<sup>&</sup>lt;sup>42</sup> T. Jin, Y. Yamamoto, *Angew. Chem. Int. Ed.*, **2007**, *46*, 3323. (b) P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, *Org. Lett.* **2011**, *13*, 3340.

<sup>&</sup>lt;sup>43</sup> Z. Liu, F. Shi, P. D. G. Martinez, C. Raminelli, R. C. Larock, *J. Org. Chem.* **2008**, *73*, 219. (b) D. G. Yu, M. Suri, F. Glorius, *J. Am. Chem. Soc.* **2013**, *135*, 8802. (c) P. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi, *J. Org. Chem.* **2012**, *77*, 3127.

Les tétrahydrobenzodipyrazoles constituant une nouvelle classe d'inhibiteurs de la CDK2 (kinase 2 cycline-dépendante)<sup>44</sup>, D'Alessio et *al*. <sup>45</sup> ont décrit la synthèse de ces composés à partir de la cyclohexane-1,3-dione **L67** et de la 1,1-diméthoxy-N,N-diméthylméthanamine **L68** et ce, *via* l'addition de Baylis-Hillman en six étapes selon le schéma 18 ci-dessous.

#### Schéma 18

Bien que ce soit une synthèse en plusieurs étapes, les intermédiaires ont été obtenus avec de très bons rendements et sous forme cristalline, le groupement ester ou amide en position 3 des composés L73 et L74 pouvant offrir de multiples possibilités de fonctionnalisation. La dernière étape réside dans l'oxydation du dihydrobenzodipyrazole L75 en benzodipyrazole L76, oxydation réalisée en utilisant la 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). La généralité de cette méthode a été démontrée par la préparation de plus de quarante dérivés.

#### I.2.1.1.G Synthèse de 1*H*-indazoles à partir d'o-nitrobenzaldéhydes

Zhang et ses collaborateurs ont décrit la synthèse des 1*H*-indazoles substitués en position 3 à partir de l'*o*-nitrobenzaldéhyde **L77** par réaction de cette entité carbonylée avec

31

<sup>&</sup>lt;sup>44</sup> R. D'Alessio, A. Bargiotti, S. Metz, M. G. Brasca, A. Cameron, A. Ermoli, A. Marsiglio, P. Polucci, F. Roletto, M. Tibolla, M. L. Vazquez, A. Vulpetti, P. Pevarello, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1315.

<sup>&</sup>lt;sup>45</sup> N. P. Peet, M. E. Letourneau, *Heterocycles*. **1991**, *32*, 41.

l'acide malonique en présence de formiate d'ammonium dans l'éthanol. <sup>46</sup> Une cyclisation ultérieure, conduite en milieu réducteur, permet *via* l'action d'une base d'accéder à l'acide 2-(1*H*-indazol-3-yl) acétique **L78** avec un rendement modéré. Cet intermédiaire subit ensuite diverses transformations pour générer les dérivés indolylindazolylmaléimides souhaités **L79** (Schéma 19).

#### Schéma 19

#### I.2.1.2 Synthèses de composés 1*H*-indazoles *N*-substitués

#### I.2.1.2.A Synthèse des 1*H*-indazoles à partir d'o-halogénophénones

La réaction des *o*-bromobenzaldéhydes ou des *o*-bromoacétophenones **L80** avec les arylhydrazines **L81** conduit aux hydrazones arylés correspondantes **L82**, qui sont par la suite cyclisées pour former les produits désirés **L83**.<sup>47</sup> (Schéma 20).

#### Schéma 20

Une approche similaire « one pot » catalysée par le cuivre sous irradiation micro-ondes a été réalisée. <sup>48</sup> Cette réaction débute par la condensation des *o*-halobenzaldéhydes **L84** sur

<sup>&</sup>lt;sup>46</sup> H. C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W. M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. A. Gordon, B. P. Damiano, B. E. Maryanoff, *J. Med. Chem.* **2005**, *48*, 1725.

<sup>&</sup>lt;sup>47</sup> A. Y. Lebedev, A. S. Khartulyari, A. Z. Voskoboynikov, *J. Org. Chem.*, **2005**, *70*, 596. (b) R. C. Wheeler, E. Baxter, I. B. Campbell, S. J. F. Macdonald, *Am. Chem. Soc.* **2011**, *15*, 565.

<sup>&</sup>lt;sup>48</sup> C. Pabba, H. J.Wang, S. R. Mulligan, Z. J. Chen, T. M. Stark, B. T. Gregg, *Tetrahedron Lett.*, **2005**, *46*, 7553. (b) X. Xiong, Y. Jiang, D. Ma, *Org. Lett.* **2012**, *14*, 2552.

des phénylhydrazines **L85** pour conduire aux arylhydrazones **L86**. Contrairement à la synthèse précédente (schéma 20), les arylhydrazones ne sont pas isolés et sont cyclisés en présence d'iodure de cuivre et d'une diamine pour donner les 1-aryl-1*H*-indazoles **L87** (schéma 21). La *N*-arylation se révèle efficace (conversion de 100%) lorsque deux équivalents de K<sub>2</sub>CO<sub>3</sub>, 5% en moles de Cul et 10% en moles de diamine **L88** sont utilisés. Le rôle et la nature du ligand diamine semblent être très importants. En effet, lorsque la diamine **L88** est remplacée par la diamine **L89**, la conversion diminue à 82%. Sans diamine, la conversion s'avère inférieure à 5%.

#### Schéma 21

Piccionello et *al.*<sup>49</sup> ont synthétisé le 1-méthyl-1*H*-indazole au départ du dérivé 4-méthoxylé correspondant **L91**, lui-même obtenu à partir du pentafluorobenzaldéhyde **L90**. Le dérivé **L91** est condensé avec la méthyl hydrazine pour former l'hydrazone correspondante **L92** qui est cyclisée à température élevée permettant ainsi l'accès au produit désiré **L93** (schéma 22).

#### Schéma 22

Lee et *al*.<sup>50</sup> ont synthétisé le 1-aryl-1*H*-indazole **L97** en utilisant un protocole similaire.<sup>45,51</sup> Cette séquence met en jeu le traitement du 4-bromo-2-fluorobenzaldéhyde **L94** par le bromure de méthylmagnésium suivie d'une oxydation au moyen du trioxyde de chrome CrO<sub>3</sub>, pour obtenir la 4-bromo-2-fluoroacétophénone. Le traitement de cette dernière par l'arylhydrazine permet d'accéder à l'hydrazone correspondante **L96** qui est ensuite cyclisée, générant ainsi l'indazole souhaité **L97** (Schéma 23).

<sup>51</sup> D. Vina, E. D. Olmo, J. L. L. Perez, A. San Feliciano, *Org. Lett.* **2007**, *9*, 525.

<sup>&</sup>lt;sup>49</sup> A. P. Piccionello, A. Pace, P. Pierro, I. Pibiri, S. Buscemi, N. Vivona, *Tetrahedron* **2009**, *65*, 119.

<sup>&</sup>lt;sup>50</sup> Y. K. Lee, D. J. Parks, T. Lu, T.V. Thieu, T.Markotan, W. Pan, D. F. McComsey, K. L.Milkiewicz, C. S. Crysler, N. Ninan, M. C. Abad, E. C. Giardino, B. E. Maryanoff, B. P. Damiano, M. R. Player, *J. Med. Chem.* **2008**, *51*, 282.

#### Schéma 23

Une synthèse intéressante du 1*H*-indazole a été décrite par Suzuki et *al.*<sup>52</sup> et ce, *via* une aroylation NHC-catalysée par l'imidazolidenyl carbène, ce dernier étant généré *in situ* par traitement de l'iodure de 1,3-diméthylimidazolium avec de l'hydrure de sodium (Schéma 24).

#### Schéma 24

#### I.2.1.2.B Synthèse de 1*H*-indazoles à partir d'o-hydroxybenzaldéhydes

Lokhande et *coll*.<sup>53</sup> ont mis au point une stratégie de synthèse des 1*H*-indazoles substitués en positions 1 et 3 par condensation sur l'*o*-hydroxybenzaldéhyde **L103** à reflux dans l'éthanol du chlorhydrate d'hydrazine utilisé en excès. Un ensemble de composés a été synthétisé selon cette voie avec des rendements de l'ordre de 70 à 92% (Schéma 25).

#### Schéma 25

<sup>&</sup>lt;sup>52</sup> Y. Suzuki, T. Toyota, A. Miyashita, M. Sato, *Chem. Pharm. Bull.* **2006**, *54*, 1653.

<sup>&</sup>lt;sup>53</sup> P. D. Lokhande, A. Raheem, S. T. Sabale, A. R. Chabukswar, S. C. Jagdale, *Tetrahedron Lett.* **2007**, 48, 6890.

#### I.2.1.2.C Synthèse des 1H-indazoles à partir d'o-aminobenzoximes

Stambuli et *al.*<sup>54</sup> ont décrit la synthèse d'indazoles substitués à partir des oximes d'aminobenzaldéhydes **L106** en présence de chlorure de mésyle, entité qui semble être le meilleur agent d'activation du groupement hydroxy comparé au chlorure d'acétyle, au dicarbonate de di-tert-butyle, au chloroformiate de méthyle ou au chlorure de tosyle. Les oximes activés sont ensuite attaqués par le groupe amino, ce qui se traduit par l'obtention des indazoles attendus avec des rendements compris entre 35 et 87% (Schéma 26).

$$R_{2} \xrightarrow{\text{II}} N \xrightarrow{\text{OH}} MsCl \text{ (1.2 équiv), TEA (2.0 équiv), DCM,0-23 °C} \xrightarrow{\text{R}_{2} \xrightarrow{\text{II}} N} R_{2} \xrightarrow{\text{N}} N$$

$$L106 \qquad L107 \qquad R_{3}$$

$$R_{1} = \text{alkyle; aryle; hétéroaryle}$$

$$R_{2} = \text{H; 5,6-diCH}_{3}\text{O; 5-Cl}$$

$$R_{3} = \text{H; alkyle; aryle: Ms; Ts}$$

#### Schéma 26

L'influence de la nature de l'isomère mis en jeu sur la réactivité a été également étudiée par l'équipe de Stambuli. Il a constaté, en accord avec les travaux de Hiroya, <sup>55</sup> que l'isomère E conduit à moins de 5% de la cible indazole. En revanche, l'isomère Z donne des rendements pouvant aller jusqu'à 86%. A noter que les oximes de départ ont été préparés à partir du chlorhydrate d'hydroxylamine et de la cétone correspondante en présence de pyridine ou de soude comme source de base.

# I.2.1.2.D Synthèse d'1H-indazoles à partir du 1-méthyl-1H-pyrazole-4-carbaldéhyde

Une approche inhabituelle a été rapportée par Simoni et *al.*<sup>56</sup> au départ du pyrazole dans le but de synthétiser des indazoles *N*-substitués. Pendant les cinq dernières années, cette méthode a été appliquée uniquement pour la synthèse du 1*H*-indazole. La réaction débute par une condensation de Stobbe du 1-méthyl-1*H*-pyrazole-4-carbaldéhyde **L108** avec le succinate d'éthyle **L109**, séquence qui est ensuite suivie d'une acylation du cycle pyrazole en position 5 (Schéma 27).

<sup>55</sup> K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya, T. Sakamoto, *Tetrahedron* **2007**, *63*, 2695.

<sup>&</sup>lt;sup>54</sup> C. M. Counceller, C. C. Eichman, B. C. Wray, J. P. Stambuli, *Org. Lett.* **2008**, *10*, 1021.

<sup>&</sup>lt;sup>56</sup> D. Simoni, R. Romagnoli, R. Baruchello, R. Rondanin, M. Rizzi, M. G. Pavani, D. Alloatti, G. Giannini, M. Marcellini, T. Riccioni, M. Castorina, M. B. Guglielmi, F. Bucci, P. Carminati and C. Pisano, *J. Med. Chem.* **2006**, *49*, 3143.

Schéma 27

#### I.2.1.3 Synthèses de 2*H*-indazoles *N*-substitués

#### I.2.1.3.A Synthèse des 2H-indazoles à partir de l'o-nitrobenzaldéhyde

Bose et *al.* <sup>57</sup> ont décrit la synthèse du 2*H*-indazole au départ de l'*o*-nitrobenzaldéhyde **L111** et d'anilines substituées **L112**. Le mélange de ces deux entités dans une grande quantité d'eau permet de former la base de Schiff **L113** correspondante. La réaction de cet intermédiare **L113** avec le triéthyl phosphite sous irradiation micro-ondes donne naissance aux produits souhaités **L114** avec de bons rendements (Schéma 28).

#### Schéma 28

Dans le cadre d'un autre travail, Gerpe et ses collègues<sup>58</sup> ont été inspirés par une préparation plus ancienne<sup>59-60-61</sup> des 2*H*-indazoles. Les bases de Schiff obtenues à partir de l'*o*-nitrobenzaldéhyde **L115** et d'amines sont traités avec du cyanure de sodium pour donner les β-aminonitriles **L117**. La cyclisation de ces derniers dans la triéthylamine en présence de NaHCO<sub>3</sub> conduit aux N-oxydes correspondants **L118**. Ces N-oxydes d'indazoles sont ensuite désoxygénés en utilisant la triphénylphosphine, ce qui permet d'accéder aux produits attendus avec des rendements modérés (Schéma 29).

<sup>&</sup>lt;sup>57</sup> D. J. Varughese, M. S. Manhas and A. K. Bose, *Tetrahedron Lett.* **2006**, 47, 6795.

<sup>&</sup>lt;sup>58</sup> A. Gerpe, G. Aguirre, L. Boiani, H. Cerecetto, M. Gonzalez, C. O. Azar, C. Rigol, J. D.Maya, A. Morello, O. E. Piro, V. J. Aran, A. Azqueta, A. L. de Cerain, A. Monge, M. A. Rojas, G. Yaluff, *Bioorg. Med. Chem.*, **2006**, *14*, 3467. (b) B. Avila, M. H. E. Dakdouki, M. Z. Nazer, J. G. Harrison, D. J. Tantillo, M. J. Haddadin, M. J. Kurth, *Tetrahedron Lett.* **2012**, *53*, 6475.

<sup>&</sup>lt;sup>59</sup> L. C. Behr, E. G. Alley, O. Levand, *J. Org. Chem.* **1962**, 27, 65.

<sup>&</sup>lt;sup>60</sup> L. C. Behr, *J. Org. Chem.* **1954**, *76*, 3672.

<sup>&</sup>lt;sup>61</sup> D. Johnston, D. M. Smith, T. Shepherd, D. Thompson, J. Chem. Soc. Perkin Trans. 1987, 1, 495.

#### Schéma 29

Par ailleurs Fang Sun et  $al.^{62}$  ont développé la synthèse des 2H-indazoles par cyclisation réductrice des 2-nitrobenzylamines **L120** en présence d'un réactif à base de titane (TiCl<sub>4</sub> / Zn) au sein de la triéthylamine (schéma 30).

## Schéma 30

## I.2.1.3.B Synthèse de 2*H*-indazoles à partir de dérivés de l'acide anthranilique

Récemment, dans le cadre de travaux concernant l'élaboration de ligands sélectifs du récepteur des oestrogènes  $\beta$  (ER- $\beta$ ),  $^{63}$  deux groupes de recherche ont appliqué pour la préparation des 3-chloro-2*H*-indazoles substitués **L125**  $^{63,64}$  une ancienne méthodologie décrite dans le schéma 31.

<sup>&</sup>lt;sup>62</sup> F. Sun, X. Feng, X. Zhao, Z. B. Huang, D. Q. Shi, *Tetrahedron* **2012**, *68*, 3851.

<sup>&</sup>lt;sup>63</sup> M. De Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen, J. A. Katzenellenbogen, J. Med. Chem. **2005**, 48, 1132.

<sup>&</sup>lt;sup>64</sup> S. R. Fletcher, E. McIver, S. Lewis, F. Burkamp, C. Leech, G. Mason, S. Boyce, D. Morrison, G. Richards, K. Sutton, A. B. Jones, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2872.

<sup>65</sup> M. A. Ardakani, R. K. Smalley, R. H. Smith, Synthesis 1979, 308.

#### Schéma 31

#### I.2.1.3.C Synthèse de 2H-indazoles à partir de cétosulfonamides

Jusqu'à présent, la majorité des indazoles mentionnés ont été préparés en solution. La synthèse en phase solide des 2*H*-indazoles a été développée par Cremades et ses collègues en 2000.<sup>66</sup> Récemment, une réaction très efficace a été réalisée en phase solide par Krchñák et ses collaborateurs.<sup>67</sup>

La *N*-alkylation du support polymère fournit le 2-nitrobenzènesulfonyle (2-Nos) activé **L134**. La fonction amine de ce dernier est alors alkylée par des bromocétones pour générer les cétosulfonamides **L135**. Le traitement de ces dérivés par le DBU se traduit par la formation d'une liaison carbone-carbone suivie par l'élaboration d'une liaison azote-azote pour produire les oxydes d'indazole **L136**. Dans le but d'accéder à l'hétérocycle désiré, le chlorure de mésyle en présence de triéthylamine à température ambiante s'avère être le réactif de choix pour réaliser la désoxygénation souhaitée (Schéma 32)<sup>67</sup>.

<sup>&</sup>lt;sup>66</sup> P. L. Cremades, P. Molina, E. Aller, A. Lorenzo, *Synlett.* **2000**, 1411.

<sup>&</sup>lt;sup>67</sup> I. Bouillon, J. Zaj´ıcek, N. Pudelov´a, V. Krchñák, *J. Org. Chem.* **2008**, *73*, 9027.

Schéma 32

Cette réaction à partir du 2-nitrobenzènesulfonyle L135 menant à l'oxyde d'indazole L136 implique deux transformations consécutives : la formation d'une liaison C-C suivie par la formation d'une liaison N-N. Cette transformation peut être considérée comme une variation d'un réarrangement de Smiles faisant intervenir un C-nucléophile interne, la 2-nitrobenzylamine intermédiaire subissant la cyclodéshydratation spontanée pour former les oxydes d'indazoles (schéma 33).

Schéma 33

## I.2.1.3.D Synthèse des 2*H*-indazoles par réaction de Baylis-Hillman

Les 2*H*-indazoles disubstitués en positions 2 et 3 ont été synthétisés par la réaction de Baylis-Hillman à partir de la cyclohex-2-éne-1-one **L141** et d'aldéhydes.<sup>68</sup> Cette réaction conduit intermédiairement à la formation d'hydrazones, qui sont ensuite cyclisées, permettant ainsi l'obtention des tétrahydro-2*H*-indazoles **L144**.<sup>69</sup> Ces derniers sont ensuite oxydés au moyen de 2 équivalents de DDQ dans le benzène à reflux (schéma 34).

#### Schéma 34

#### I.2.1.3.E Synthèse des 2H-indazoles à partir du 2-bromobenzaldéhyde

Kumar et *al.*<sup>70</sup> ont rapporté la synthèse des 2*H*-indazoles **L151** par réaction du 2-bromo benzaldéhyde **L149** avec des amines primaires et de l'azoture de sodium en utilisant un catalyseur à base de cuivre. Cette réaction donne une vaste possibilité de synthèse de 2*H*-indazoles avec une grande tolérance pour une large variété de groupements fonctionnels (Schéma 35).

#### Schéma 35

## I.2.2- Réactivité des halogénoindazoles vis-à-vis des couplages métallo-catalysés

Bien que les dérivés d'indazoles possèdent des propriétés pharmacologiques intéressantes, seuls quelques travaux concernant leur réactivité vis-à-vis des couplages catalysés par le palladium ont été publiés.

A noter que le couplage de Suzuki-Miyaura est la première réaction catalysée par le palladium décrite sur les indazoles. Ainsi, Rault et *al.*<sup>71</sup> ont développé des conditions adaptées

<sup>&</sup>lt;sup>68</sup> K. Y. Lee, S. Gowrisankar, J. N. Kim, *Tetrahedron Lett.* **2005**, *46*, 5387.

<sup>&</sup>lt;sup>69</sup> K. Y. Lee, J. M. Kim, J. N. Kim, *Tetrahedron Lett.* **2003**, 44, 6737.

<sup>&</sup>lt;sup>70</sup> M. R. Kumar, A. Park, N. Park, S. Lee, *Org. Lett.* **2011**, *13*, 3542.

<sup>&</sup>lt;sup>71</sup> V. Collot, P. Dallemagne, P. R. Bovy, S. Rault, *Tetrahedron* **1999**, *55*, 6917. (b) V. Collot, P. R. Bovy, S. Rault, *Tetrahedron Lett.* **2000**, *41*, 9053.

pour réaliser le couplage entre le 3-iodoindazole et des acides boroniques arylés ou hétéroarylés, permettant ainsi de fonctionnaliser sélectivement la position 3 (schéma 36).

$$\begin{array}{c|c} I & Ar_2B(OH)_2 \\ \hline N & Pd(PPh_3)_4, NaHCO_3 \\ \hline N & DME, 80 °C, 2-3 h \\ \hline Ar_1 & Ar_1 \end{array}$$

#### Schéma 36

Le même groupe a rapporté une voie générale conduisant aux 3-indazolyléthylamines *via* un couplage de Heck<sup>72</sup> au départ du 3-iodoindazole et de l'acrylate de méthyle et ce, en utilisant une quantité catalytique de PdCl<sub>2</sub>(dppf) (schéma 37).

#### Schéma 37

En 2002, la même équipe a décrit un couplage de Sonogashira<sup>73</sup> sur le 3-iodoindazole en utilisant divers alcynes avec pour but la préparation de nouveaux dérivés d'indazoles à structure propargylique (schéma 38).

Schéma 38

## II. Etude de la réaction d'arylation où d'hétéroarylation directes sur divers hétérocycles

<sup>&</sup>lt;sup>72</sup> V. Collot, D. Varlet, S. Rault, *Tetrahedron Lett.* **2000**, *41*, 4363.

<sup>&</sup>lt;sup>73</sup> A. Arnautu, V. Collot, J. C. Ros, C. Alayrac, B. Witulski, S. Rault, *Tetrahedron Lett.* **2002**, *43*, 2695.

Dans les prochains chapitres de ce mémoire seront évoqués nos principaux résultats concernant les réactions d'arylation régiosélective. Afin de mieux cerner le contexte dans lequel s'inscrivent ces études, une présentation plus spécifique de la réaction d'arylation directe s'avère nécessaire.

#### **II.1- Introduction**

La formation de la liaison carbone sp² carbone sp² via des réactions catalysées par des métaux de transition constitue l'une des transformations les plus spectaculaires en synthèse organique. C'est pourquoi beaucoup de chimistes cherchent actuellement à développer de nouvelles méthodologies pour y parvenir.

Parmi les réactions qui ont été largement étudiées ces dernières années, <sup>74</sup> nous pouvons mettre en exergue la réaction d'arylation où d'hétéroarylation directe catalysée par des métaux de transition.

L'incroyable dimension prise par cette méthode depuis sa mise au point est stigmatisée par les nombreux exemples publiés dans la littérature à ce sujet et le rôle clé joué par cette séquence pour accéder soit à des composés organiques complexes, soit à des produits naturels. Ces réactions d'arylations directes peuvent avoir lieu d'une façon intermoléculaire ou intramoléculaire. Dans ce chapitre bibliographique, nous ferons un bref rappel des réactions d'arylations directes catalysées par des métaux de transition et leur application récente concernant l'élaboration ou la fonctionnalisation d'hétérocycles.

La régiosélectivité de la réaction d'arylation directe intermoléculaire dépend, certes du type d'hétérocycle mis en jeu, mais aussi de la nature du catalyseur utilisé.

Récemment, plusieurs études ont révélé l'importance d'autres facteurs dans cette séquence tels que le solvant, l'additif (par exemple les sels de cuivre Cu (I)) voire les bases et les ligands employés. Dans bien des cas, les solvants polaires (DMF, DMA, CH<sub>3</sub>CN et DMSO) se sont révélés être des solvants de choix, bien que les solvants non polaires comme le toluène et le xylène soient également utilisés avec succès.

Les ligands usités dans cette réaction dépendent souvent de la nature des composés halogénoarylés mis en oeuvre. Par exemple, pour les dérivés iodoarylés, les phosphines monodentates moyennement riches en électrons telle que la triphénylphosphine sont souvent utilisées. Ces mêmes phosphines ont été également exploités avec réussite au départ de

<sup>&</sup>lt;sup>74</sup> S. Grosse, « *Thèse de doctorat* »; Université d'Orléans (France), **2014**.

dérivés bromés. A noter que, dans certains cas, l'utilisation d'une phosphine plus encombrante et riche en électrons a permis l'obtention de rendements plus élevés.<sup>75</sup>

Récemment, l'usage des analogues chlorés a également été rapporté. <sup>76</sup> Conformément aux observations faites avec les couplages classiques catalysés par le palladium, la faible réactivité de la liaison C-Cl nécessite souvent l'emploi de ligands riches en électrons et stériquement encombrés de type trialkylphosphines PR<sub>3</sub>.

Bien que la présence d'une base soit généralement nécessaire pour les réactions d'arylations directes,<sup>77</sup> dans la plupart des cas son rôle demeure obscur. Pourtant, quelques résultats récents nous amènent à penser que, dans certains systèmes, la base est impliquée, certes dans la régénération du système catalytique actif,<sup>78</sup> mais également dans la formation de l'espèce palladium (II) bis-arylée. En général, les bases telles que K<sub>2</sub>CO<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub>, KOAc, KO-*t*Bu, et CsOPiv sont les plus fréquemment employées. A noter aussi que les sels de césium se sont révélés d'une haute efficacité dans plusieurs systèmes grâce à leur plus grande solubilité dans les solvants organiques.

#### II.2- Mécanisme réactionnel

Pour générer de manière efficace la liaison Csp<sup>2</sup> - Csp<sup>2</sup>, l'arylation catalysée par le palladium fait en général appel à quatre mécanismes potentiels:<sup>79</sup>

- A) la carbométallation que l'on peut assimiler à un mécanisme de Heck
- B) la métallation électrophile que l'on peut comparer à une substitution électrophile aromatique
  - C) la métallation-déprotonation non concertée qui s'apparente à un couplage croisé
- D) l'activation C-H, incluant la métallation-déprotonation concertée, l'addition oxydante dans la liaison C-H ou la «σ-bond metathesis»

<sup>&</sup>lt;sup>75</sup> (a) Wolfe, J. P.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **1999**, *38*, 2413. (b) Wolfe, J. P.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **1999**, *38*, 3415. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. *J. Am. Chem. Soc.* **1999**, *121*, 9550.

<sup>&</sup>lt;sup>76</sup> Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. **2002**, 41, 4176.

<sup>&</sup>lt;sup>77</sup> Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. **2006**, 1379.

<sup>&</sup>lt;sup>78</sup>a) Campeau, L.-C.; Fagnou, K. *Chem. Commun.* **2006**, 1253. b) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. *J. Am. Chem. Soc.* **2006**, 128, 581. c) García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. *J. Am. Chem. Soc.* **2006**, 128, 1066.

<sup>&</sup>lt;sup>79</sup> a) H.-Y. Sun, S. I. Gorelsky, D. R. Stuart, L.-C. Campeau, K. Fagnou, *J. Org. Chem.* **2010**, *75*, 8180. b) L. Theveau, C. Verrier, P. Lassalas, T. Martin, G. Dupas, O. Querolle, L. Van Hijfte, F. Marsais, C. Hoarau, *Chem. Eur. J.* **2011**, *17*, 14450.

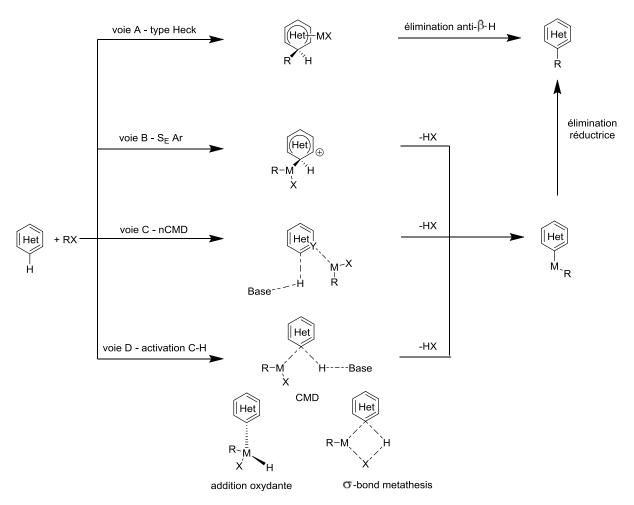



Schéma 39

#### II.3- Cas des indoles

L'indole est le système hétérocyclique le plus étudié vis-à-vis de l'arylation directe. Les derniers développements ont été abondamment résumés dans des revues récentes. <sup>80,81</sup> Pour cette raison, cette première section résume seulement les nouveaux développements rapportés dans ce domaine, constituant ainsi une mise à jour des revues exhaustives publiées par Djakovitch et *al.* <sup>80</sup> et par Larrosa et *al.* <sup>82</sup>

Sachant que l'indole et ses dérivés présentent deux sites d'arylation directe, à savoir les positions 2 et 3, nous allons présenter les deux possibilités.

#### II.3.1- Arylation des indoles en position C-2

Les indoles ont fait l'objet d'un grand nombre de travaux d'arylation en position 2. De ce fait, des conditions réactionnelles très diverses ont été décrites dans la littérature.

<sup>&</sup>lt;sup>80</sup> L. Jouela, L. Djakovitch, Adv. Synth. Catal. **2009**, 351, 673.

<sup>81</sup> F. Jafarpour, P. T. Ashtiani, J. Org. Chem. **2009**, 74, 1364.

<sup>&</sup>lt;sup>82</sup> N. Lebrasseur, I. Larrosa, Adv. Heterocycl. Chem. **2012**, 309.

Les premières études ont été rapportées par Sames et ses collaborateurs en 2004.<sup>83</sup> Ces auteurs ont utilisé l'iodobenzène comme partenaire de couplage en présence de Pd(OAc)<sub>2</sub>, Ph<sub>3</sub>P et CsOAc dans le DMA à 150 °C. Ils ont observé l'élaboration d'un produit secondaire, le biphényle, en raison de la réaction d'homocouplage. Ce problème a été résolu par la diminution de la quantité du catalyseur ce qui favorise la synthèse du produit arylé et réduit la formation du sous-produit né de l'homocouplage. L'utilisation de 5 moles % de Pd(OAc)<sub>2</sub> conduit à la synthèse du produit souhaité avec un rendement de 68% (schéma 40).

Schéma 40

Une séquence d'arylation directe sur l'indole dont l'azote ne porte pas de substituant a également été rapportée par le même groupe de recherche<sup>84</sup>, séquence effectuée en utilisant le [Rh(coe)<sub>2</sub>Cl]<sub>2</sub> en tant que catalyseur et le [p-(CF<sub>3</sub>) C<sub>6</sub>H<sub>4</sub>]<sub>3</sub>P en tant que ligand. A noter qu'un mécanisme plausible de l'arylation en C2 est suggéré dans cet article (Schéma 41).

$$\begin{array}{c} Ph-I \\ [Rh(coe)_2CI]_2, \ [p-(CF_3)C_6H_4]_3P \\ \hline CsOPiv, \ 1,4-dioxane, \ 120^{\circ}C \\ 82\% \end{array}$$

Schéma 41

<sup>83</sup> B. S. Lane, D. Sames, Org. Lett. 2004, 6, 2897.

<sup>84</sup> X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc. 2005, 127, 4996.

Une fois cette découverte réalisée, d'autres approches sont apparues, à savoir (schéma 42) :

- le groupe de Sames a décrit une nouvelle méthode d'arylation en position 2 de l'indole protégé au niveau de l'azote, cette réaction étant catalysée par un nouveau catalyseur à base de palladium (catalyseur A)<sup>85</sup> (méthode A).
- ➤ En 2011, Yanagisawa et Itami<sup>86</sup> ont rapporté une arylation en position 2 de l'indole en utilisant le Pd-bipyridine comme système catalytique et Ag<sub>2</sub>CO<sub>3</sub> comme agent oxydant (méthode B).
- ➤ Très récemment, Lu et *al*.<sup>87</sup> ont démontré que l'utilisation du [Cp\*RhCl<sub>2</sub>]<sub>2</sub> en tant que catalyseur s'avère au départ des organosilanes efficace pour l'arylation directe en position 2 de l'indole *N*-protégé (méthode C).
- Le même catalyseur a été utilisé par l'équipe de Zheng et ses collaborateurs<sup>88</sup> pour la CH arylation de l'indole, l'emploi d'oxyde d'argent ou d'acétate de cuivre comme oxydant, en présence des acides boroniques permettant d'obtenir le produit désiré (méthode D).
- ➤ Un procédé similaire à celui rapporté par le groupe de Larrosa<sup>89</sup> a été développé par Su et *al*. <sup>90</sup> pour l'arylation directe de l'indole avec des acides benzoïques (méthode E).

Schéma 42

D'autres études d'arylation directe de l'indole ont été réalisées par Ohta's et al. 91,92. Les auteurs ont montré que l'utilisation d'un groupement protecteur électroattracteur, comme le

<sup>&</sup>lt;sup>85</sup> B. B. Toure, B. S. Lane, D. Sames, *Org. Lett.* **2006**, *8*, 1979.

<sup>&</sup>lt;sup>86</sup> S. Yanagisawa, K. Itami, *Tetrahedron* **2011**, 67, 4425.

<sup>87</sup> M.-Z. Lu, P. Lu, Y.-H. Xu, T.-P. Loh, Org. Lett. 2014, 16, 2614.

<sup>&</sup>lt;sup>88</sup> J. Zheng, Y. Zhang, S. Cui, *Org. Lett.* **2014**, *16*, 3560.

<sup>&</sup>lt;sup>89</sup> J. Cornella, P. Lu, I. Larrosa, *Org. Lett.* **2009**, *11*, 5506.

<sup>90</sup> J. Zhou, P. Hu, M. Zhang, S. Huang, M. Wang, W. Su, *Chem. Eur. J.* **2010**, *16*, 5876.

tosyle, conduit sélectivement au produit arylé en position 3, alors que la réaction du *N*-méthylindole avec la chloropyrazine réalisée dans les mêmes conditions fournit le produit arylé en position 2 (schéma 43).

Schéma 43

#### II.3.2- Arylation des indoles en position C-3

La littérature fait état de plusieurs travaux d'arylation en position 3 de l'indole (schéma 44).

- ➤ Le groupe de Sames<sup>93</sup> a montré que l'utilisation de CH<sub>3</sub>MgCl et de la tétraméthyléthylènediamine (TMEDA), en présence du IMes comme ligand conduit sélectivement au produit souhaité (méthode A).
- ➤ Un protocole efficace pour l'arylation régiosélective en position 3 de l'indole a été proposé par He et ses collaborateurs, <sup>94</sup> ces derniers utilisant un complexe de palladium stable à l'air représenté par le sigle (POPd) (méthode B).
- ➤ Le groupe de Rossi<sup>95</sup> a développé une arylation en C3 de l'indole non substitué sur l'azote en présence du Pd(OAc)<sub>2</sub>, BnBu<sub>3</sub>NCl et K<sub>2</sub>CO<sub>3</sub> dans le toluène à 110 °C pendant 24 h. Ces conditions ont donné de bons rendements et une excellente sélectivité (méthode C).

<sup>&</sup>lt;sup>91</sup> Y. Akita, Y. Itagaki, S. Takizawa, A. Ohta, Chem. Pharm. Bull. **1989**, 37, 1477.

<sup>92</sup> Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, *Heterocycles* 1985, 23, 2327.

<sup>93</sup> B. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc. 2005, 127, 8050.

<sup>&</sup>lt;sup>94</sup> Z. Zhang, Z. Hu, Z. Yu, P. Lei, H. Chi, Y. Wang, R. He, *Tetrahedron Lett.* 2007, 48, 2415.

<sup>&</sup>lt;sup>95</sup> F. Bellina, F. Benelli, R. Rossi, J. Org. Chem. **2008**, 73, 5529.

- Ackermann et *al.*<sup>96</sup> a publié une arylation hautement régiosélective en position 3 de l'indole mettant en jeu un complexe de palladium stigmatisé par le signe (HASPO). Le produit désiré est isolé avec un bon rendement (méthode D).
- Le groupe de Djakovitch a décrit une étude intéressante sur l'arylation régiosélective de l'indole<sup>97</sup>. Ces auteurs ont mis en évidence l'effet crucial du bis (diphénylphosphino)-méthane (dppm) en présence d'hydroxyde de lithium dans l'eau à 110 °C, ce système permettant d'obtenir le produit attendu avec une bonne sélectivité et un bon rendement (méthode E).
- Très récemment, le groupe de Chen<sup>98</sup> a rapporté l'arylation directe pallado-catalysée de l'indole, cette méthode étant basée sur l'utilisation de la phénylhydrazine en tant que partenaire de couplage en présence de la 1,10-phénanthroline comme ligand, de l'air en tant qu'oxydant et du chlorobenzène comme solvant (méthode F).
- ➤ Djakovitch et Cusati<sup>99</sup> ont signalé une arylation hétérogène régiosélective catalysée par le palladium. Ils ont constaté que le traitement de l'indole avec un dérivé bromoarylique en présence du Pd(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup>/ NaY et K<sub>2</sub>CO<sub>3</sub> au reflux du dioxane pendant 24 h conduit au produit arylé en C3 avec un bon rendement (méthode G).
- ➤ Le même groupe 100 fait état de l'arylation pallado-catalysée en position 3 du 2-phénylindole en présence de tétrafluoroborate d'argent dans la N-méthyl-2-pyrrolidone à 140 °C pendant 96 h (méthode H).

<sup>&</sup>lt;sup>96</sup> L. Ackermann, S. Barfuesser, Synlett **2009**, 808.

<sup>&</sup>lt;sup>97</sup> L. Joucla, N. Batail, L. Djakovitch, *Adv. Synth. Catal.* **2010**, *352*, 2929.

<sup>98</sup> Y. Chen, S. Guo, K. Li, J. Qu, H. Yuan, Q. Hua, B. Chen, Adv. Synth. Catal. 2013, 355, 711.

<sup>99</sup> G. Cusati, L. Djakovitch, Tetrahedron Lett. 2008, 49, 2499.

<sup>&</sup>lt;sup>100</sup> L. Djakovitch, P. Rouge, R. Zaidi, *Catal. Comm.* **2007**, 8, 1561.

Schéma 44

D'autres travaux, menés par Guant et  $al.^{101}$  ont montré que l'utilisation de  $Cu(OTf)_2$  comme catalyseur à température ambiante se révèle efficace pour réaliser l'arylation régiosélective en position 3 de l'indole. Les auteurs de ce travail ont proposé un mécanisme relativement complexe faisant appel à un intermédiaire de Cu(III) (schéma 45).

#### Schéma 45

Les études conduites par Larrosa et *al.*<sup>89</sup> ont rapporté une arylation directe palladocatalysée de l'indole protégé au niveau de l'azote en utilisant comme agents d'arylation des acides benzoïques portant des substituants attracteurs en position ortho (schéma 46).

<sup>&</sup>lt;sup>101</sup> R. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am. Chem. Soc. **2008**, 130, 8172.

Schéma 46

## II.4- Cas des azaindoles

Sames et *al*.<sup>85</sup> ont adapté les conditions précédemment optimisées lors de l'arylation en C-2 de l'indole afin de réaliser l'arylation du 7-azaindole. Pour ce faire, deux méthodes ont été développées (méthodes A et B, voir schéma 47).

$$\begin{array}{c} Ph\text{-I} \\ \text{"Pd/ligand} \\ Cs_2CO_3,DMA,\ 125^\circ C,\ 24h \\ \hline \\ CH_3 \\ \text{Method A: Pd/ligand} = Pd(OAc)_2/Ph_3P \\ \text{Method B: Pd/ligand} = Catalyseur\ C \\ \hline \\ O \\ Pd(I)_2PPh_3 \\ \end{array}$$

Schéma 47

Fagnou et Huestis<sup>102</sup> ont trouvé un nouveau protocole pour l'arylation directe en position 6 du *N*-oxyde du *N*-méthyl-7-azaindole, protocole mettant en œuvre l'acètate de palladium (II) et le DavePhos comme système catalytique et ligand, avec l'acide pivalique comme additif, en présence de carbonate de césium comme base au sein du toluène (schéma 48).

Schéma 48

<sup>&</sup>lt;sup>102</sup> M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357.

Le même groupe<sup>102</sup> fait également état de l'arylation directe en C-7 du *N*-oxyde du *N*-méthyl-6-azaindole en utilisant toujours les mêmes conditions (Schéma 49).

#### Schéma 49

Plus récemment, Das et ses collaborateurs<sup>103</sup> ont montré que l'acétate de palladium s'avère un catalyseur approprié pour l'arylation oxydative en C-2 lors de la réaction entre le *N*-méthyl-7-azaindole et l'acide phénylboronique (Schéma 50).

#### Schéma 50

## II.5- Cas des imidazo[1,2-a]pyridines

Au sein de notre laboratoire, El Kazzouli et *al.*<sup>104</sup> ont publié une revue exhaustive sur la fonctionnalisation des imidazo [1,2-a] pyridines *via* des réactions de couplages croisés. Ces auteurs ont notamment décrit la première arylation régiosélective en position 3 de l'imidazo [1,2-a] pyridine. A signaler que les réactions sont réalisées soit par chauffage classique soit par irradiation micro-ondes (schéma 51).

<sup>&</sup>lt;sup>103</sup> P. S. Humphries, J. V. Almaden, S. J. Barnum, T. J. Carlson, Q.-Q. T. Do, J. D. Fraser, M. Hess, Y. H. Kim, K. M. Ogilvie, S. Sun, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 6116.

<sup>&</sup>lt;sup>104</sup> J. Koubachi, S. El Kazzouli, M. Bousmina, G. Guillaumet, Eur. J. Org. Chem. **2014**, 5119.

<sup>&</sup>lt;sup>105</sup> J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Synlett.* **2006**, 3237.

<sup>&</sup>lt;sup>106</sup> J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, J. Org. Chem. **2007**, 72, 7650.

#### Schéma 51

Indépendamment, Sames et *al.*<sup>85</sup> ont publié trois exemples d'arylation en C3 des imidazo [1,2-a] pyridines faisant appel à un catalyseur à base de palladium (II) complexé avec des imidazolylcarbènes (NHC) (schéma 52).

#### Schéma 52

En 2007, Koubachi et *al.*<sup>106</sup> ont développé deux méthodes efficaces pour la synthèse du des imidazo[1,2-a]pyridines disubstituées en positions 3 et 6. La première approche fournit le composé désiré en deux étapes *via* une séquence « one pot » sous irradiation micro-ondes (Schéma 53).

#### Schéma 53

La deuxième démarche, consiste à réaliser une réaction de cyclisation suivie d'un couplage de type Suzuki, puis une hétéroarylation et ce, selon une procédure "one-pot" par

activation micro-ondes. Cette séquence conduit aux imidazo [1,2-a] pyridines trisubstituées en positions 2, 3 et 6 (schéma 54).

#### Schéma 54

Quelques année plus tard, Li et ses collègues<sup>107</sup> ont utilisé la même stratégie pour préparer la 2,3-diarylimidazo[1,2-a]pyridine en faisant toujours appel à une stratégie «one pot ». Cette réaction, catalysée par le palladium, est également conduite sous irradiation micro-ondes (schéma 55).

#### Schéma 55

Très récemment, Berteina et ses collaborateurs<sup>108</sup> ont rapporté que le PEG<sub>400</sub> pouvant s'avérer un milieu approprié pour la synthèse des 2,3-diarylimidazo[1,2-a]pyridines disubstituées au moyen de deux séquences successives, une cyclisation suivie d'une CH arylation (schéma 56).

<sup>&</sup>lt;sup>107</sup> Y. Wang, B. Frett, H.-y. Li, Org. Lett. 2014, 16, 3016.

<sup>&</sup>lt;sup>108</sup> M.-A. Hiebel, Y. Fall, M.-C. Schermann, S. Berteina-Raboin, Eur. J. Org. Chem. **2014**, 4643.

#### Schéma 56

Récemment, Jiang et *al.* 109 ont développé une nouvelle méthode pour l'arylation en C-3 de l'imidazo [1,2-a] pyridine en utilisant l'iodure de cuivre comme catalyseur (schéma 57).

#### Schéma 57

Par ailleurs, Liu et ses collaborateurs, <sup>110</sup> pour leur part, ont décrit une nouvelle arylation directe des imidazo [1,2-a] pyridines catalysée par le rhodium (schéma 58).

$$(1.2 \text{ \'equiv}) \quad \text{Br} \qquad \qquad \text{H}_3\text{C}$$

$$CH_3$$

$$[Rh(\text{cod})\text{Cl}]_2 \text{ (2.5 mol\%)},$$

$$PPh_3 \text{ (8 mol\%)}$$

$$K_2\text{CO}_3 \text{ (2 \'equiv)},$$

$$NMP, 100 °C, 20 \text{ h}$$

#### Schéma 58

Très récemment, Cao et ses collègues<sup>111</sup> ont mis au point une arylation en position 3 de l'imidazo [1,2-a] pyridine et ce, par condensation d'acides arylboroniques catalysée par le palladium (schéma 59).

<sup>&</sup>lt;sup>109</sup> H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, Org. Lett. **2012**, 14, 1688.

<sup>&</sup>lt;sup>110</sup> Y. Liu, L. He, G. Yin, G. Wu, Y. Cui, *Bull. Kor. Chem. Soc.* **2013**, *34*, 2340.

<sup>&</sup>lt;sup>111</sup> L. Zhao, H. Zhan, J. Liao, J. Huang, Q. Chen, H. Qiu, H. Cao, Catal. Comm. **2014**, 56, 65.

$$(HO)_2B \longrightarrow (2.4 \text{ équiv})$$

$$Pd(OAc)_2 \text{ (5 mol\%),}$$

$$Cu(OAc)_2 \text{ (10 mol\%)/ } O_2$$

$$Phénanthroline \text{ (10 mol\%),}$$

$$1,4-Dioxane, 120 °C, 24 h$$

#### Schéma 59

En 2011, Lee et ses collaborateurs<sup>112</sup> ont préparé les 3-arylimidazo[1,2-a]pyridines par CH-arylation directe de l'imidazo[1,2-a]pyridine au moyen d'halogénures d'aryle (Br ou Cl) en utilisant comme catalyseur l'acétate de palladium (II) (schéma 60).

Schéma 60

En 2014, Hicken et *al.*<sup>113</sup> ont fait état de la synthèse et de l'évaluation biologique d'une nouvelle classe d'imidazo[1,2-a]pyridines préparée au départ de l'imidazo [1,2-a] pyridine et d'une chloroquinoléine (schéma 61).

<sup>&</sup>lt;sup>112</sup> P. V. Kumar, W.-S. Lin, J.-S. Shen, D. Nandi, H. M. Lee, *Organometallics*. **2011**, *30*, 5160.

<sup>&</sup>lt;sup>113</sup> E. J. Hicken, F. P. Marmsater, M. C. Munson, S. T. Schlachter, J. E. Robinson, S. Allen, L. E. Burgess, R. K. DeLisle, J. P. Rizzi, G. T. Topalov, Q. Zhao, J. M. Hicks, N. C. Kallan, E. Tarlton, A. Allen, M. Callejo, A. Cox, S. Rana, N. Klopfenstein, R. Woessner, J. P. Lyssikatos, *ACS Med. Chem. Lett.* **2014**, *5*, 78.

#### Schéma 61

Au sein de notre laboratoire, Koubachi et *al.*<sup>114</sup> ont mis au point une arylation intramoléculaire catalysée par le palladium en position 3 des imidazo [1,2-a] pyridines. Cette méthode permet d'accéder à une nouvelle série originale de composés imidazo[1,2-a]pyridiniques polycycliques (schéma 62).

## Schéma 62

## II.6- Cas des imidazo[1,2-a]pyrimidines

Li et  $al.^{115}$  ont publié le premier exemple d'arylation directe d'imidazo [1,2-a] pyrimidines. Deux conditions réactionnelles ont été appliquées avec succès et ce, en utilisant le système catalytique  $Pd(OAc)_2/Ph_3P$ . Dans les deux cas, le produit désiré a été isolé avec un excellent rendement. (Schéma 63)

Schéma 63

56

<sup>&</sup>lt;sup>114</sup> J. Koubachi, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Tetrahedron.* **2010**, *66*, 1937.

<sup>&</sup>lt;sup>115</sup> W. J. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai, R. D. Larsen, *Org. Lett.* **2003**, *5*, 4835.

Une synthèse similaire a été décrite par Fagnou et *al*. <sup>116</sup> en utilisant le couple Pd(OH)<sub>2</sub> / C (connu sous le nom de catalyseur de Pearlman), cette séquence conduisant au produit attendu avec un bon rendement (Schéma 64).

#### Schéma 64

Le même groupe a mis au point de nouvelles conditions de réaction qui consistent à traiter l'imidazo [1,2-a] pyrimidine par des bromures d'aryles<sup>117</sup>, en présence du couple Pd(OAc)<sub>2</sub> / PCy<sub>3</sub> .HBF<sub>4</sub> comme système catalytique et ligand, le tout associé à l'utilisation d'acide pivalique et de carbonate de potassium ce qui génère *in situ* le pivalate de potassium (schéma 65).

#### Schéma 65

Une autre étude décrivant l'arylation directe de l'imidazo [1,2-a] pyrimidine sous irradiation micro-ondes a été publié par Van der Eycken et *al*. <sup>118</sup> Cette séquence utilise l'acétate de palladium et la triphénylphosphine en tant que système catalytique et ligand en présence de carbonate de césium. Le produit attendu est alors isolé avec un excellent rendement (Schéma 66).

#### Schéma 66

<sup>&</sup>lt;sup>116</sup> M. Parisien, D. Valette, K. Fagnou, J. Org. Chem. 2005, 70, 7578.

<sup>&</sup>lt;sup>117</sup> B. Liegault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* **2009**, *74*, 1826.

<sup>&</sup>lt;sup>118</sup> D. S. Ermolat'ev, V. N. Gimenez, E. V. Babaev, E. Van der Eycken, *J. Comb. Chem.* **2006**, *8*, 659.

## II.7- Cas des imidazo [1,2-a] pyrazines

Snieckus et ses collaborateurs<sup>119</sup> ont rapporté l'arylation régiosélective en position 5 de l'imidazo[1,5-a]pyrazine catalysée par le palladium, le produit attendu étant obtenu avec un bon rendement (rendement déterminé par HPLC en utilisant l'acide 4-méthoxy-benzoïque en tant qu'étalon interne) (schéma 67).

#### Schéma 67

Guchhait et *al.*<sup>120</sup> ont décrit l'arylation directe régiosélective en position 6 de la 3-aminoimidazo[1,2-a]pyrazine, le produit souhaité étant obtenu avec un bon rendement (schéma 68).

#### Schéma 68

Récemment, une réaction séquentielle conduite « one pot » a été développée par Hoarau et *al.*<sup>121</sup> Cette méthode consiste à réaliser un couplage de type Suzuki en position 6 suivi d'une réaction d'arylation en position 3 (schéma 69).

<sup>&</sup>lt;sup>119</sup> J.-X. Wang, J. A. McCubbin, M. Jin, R. S. Laufer, Y. Mao, A. P. Crew, M. J. Mulvihill, V. Snieckus, *Org. Lett.* 2008, 10, 2923.

<sup>&</sup>lt;sup>120</sup> S. K. Guchhait, S. Kandekar, M. Kashyap, N. Taxak, P. V. Bharatam, *J. Org. Chem.* **2012**, *77*, 8321.

<sup>&</sup>lt;sup>121</sup> V. Gembus, J.-F. Bonfanti, O. Querolle, P. Jubault, V. Levacher, C. Hoarau, Org. Lett. 2012, 14, 6012.

#### Schéma 69

Toujours en 2014, une nouvelle procédure de double fonctionnalisation des imidazo[1,2-a]pyrazines a été développée par Huestis et Johnson<sup>122</sup>. Cette dernière consiste à effectuer une C-H arylation directe en position 3, suivie d'une arylation également directe en position 5, les deux systèmes catalytiques présentés ici s'avérant compatibles avec divers bromures d'aryle et d'hétéroaryle (Schéma 70).

Schéma 70

## II.8- Cas des imidazo [1,2-b] pyridazines

Au sein de notre laboratoire, El Akkaoui et *al*. <sup>123</sup> ont développé une réaction d'arylation directe en position 3 des imidazo[1,2-b]pyridazines. L'optimisation des conditions de la réaction a permis l'obtention du produit attendu avec un très bon rendement (Schéma 71). Dans le même article, les auteurs ont également décrit une réaction en deux étapes (Suzuki / arylation) et ce, selon un procédé «one pot » conduisant à la fonctionnalisation des deux positions 3 et 6 des imidazo[1,2-b]pyridazines.

<sup>&</sup>lt;sup>122</sup> B. M. Johnson, M. P. Huestis, Eur. J. Org. Chem. 2014, 1589.

<sup>&</sup>lt;sup>123</sup> A. El Akkaoui, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, Eur. J. Org. Chem. 2010, 862.

Ph-Br
$$CI \longrightarrow N \longrightarrow R$$

$$R_2CO_3, Toluène, 110 °C$$

$$R = H$$

$$R = CO_2Et$$

$$Pd(OAc)_2/PPh_3, CI \longrightarrow N \longrightarrow N$$

$$R_2CO_3, Toluène, 110 °C$$

$$R_1 \longrightarrow R$$

Schéma 71

## II.9- Cas des pyrazolo[1,5-a]pyrimidines

Récemment, Bassoude et *al*.<sup>124</sup> ont rapporté une arylation directe des pyrazolo[1,5-a]pyrimidines en faisant appel au système catalytique-ligand Pd(OAc)<sub>2</sub>, P<sup>t</sup>Bu<sub>3</sub> .HBF<sub>4</sub>, en présence de K<sub>2</sub>CO<sub>3</sub> dans le toluène à reflux. Cette procédure conduit au produit arylé sur le carbone sp<sup>2</sup> positionné en 3. Fait marquant, lorsque le couple Ph<sub>3</sub>P/Cs<sub>2</sub>CO<sub>3</sub> est utilisé en lieu et place du binome P<sup>t</sup>Bu<sub>3</sub> .HBF<sub>4</sub>/ K<sub>2</sub>CO<sub>3</sub>, la réaction conduit au produit C-arylé sur le carbone sp<sup>3</sup> (schéma 72).

Schéma 72

## II.10- Cas des imidazo [1,2-b] [1,2,4,5] tétrazines

<sup>&</sup>lt;sup>124</sup> I. Bassoude, S. Berteina-Raboin, S. Massip, J.-M. Leger, C. Jarry, E. M. Essassi, G. Guillaumet, *Eur. J. Org. Chem.*, **2012**, 2572.

En 2010, Routier et ses collègues<sup>125</sup> ont développé une réaction d'(hétéro)arylation régiosélective en série tétrazénique, cette réaction constituant l'étape clé dans la constitution d'une bibliothèque d'imidazo[1,2-b][1,2,4,5]tétrazines arylées en position 6. Le protocole mis en jeu implique le traitement de l'éthoxy-7-(4-méthoxyphényl)imidazo[1,2-b][1,2,4,5]tétrazine par un bromure d'aryle sous irradiation micro-ondes, séquence qui se traduit par l'obtention du produit souhaité avec un bon rendement (Schéma 73).

Schéma 73

### II.11- Cas des indolizines

En 2009, Fagnou et ses collègues<sup>126</sup> ont décrit une méthode d'arylation permettant d'introduire divers motif aryliques en position 3 de l'indolizine-2-carboxylate d'éthyle et ce, dans le but de préparer des indolizines poly-substitués (Schéma 74).

Schéma 74

Lan et *al.*<sup>127</sup> ont montré que les dérivés chloroaryliques sont des partenaires de couplage appropriés pour l'arylation directe de l'indolizine-2-carboxylate de méthyle. Cette arylation en C-3 du carboxylate fournit un large éventail d'hétéroarènes, ce qui a permis de construire une bibliothèque de fluorophores organiques (Schéma 75).

61

L. Pellegatti, E. Vedrenne, J.-M. Leger, C. Jarry, S. Routier, J. Comb. Chem. 2010, 12, 604.

<sup>&</sup>lt;sup>126</sup> B. Liegault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* **2009**, 74, 1826.

<sup>&</sup>lt;sup>127</sup> B. Liu, Z. Wang, N. Wu, M. Li, J. You, J. Lan, *Chem. Eur. J.* **2012**, *18*, 1599.

#### Schéma 75

En 2014, Gryko et ses collaborateurs<sup>128</sup> ont démontré la possibilité de préparer efficacement une structure possédant deux entités indolizines et ce, par couplage direct au départ du 2,7-dibromo-9,9-dioctylfluorène. En appliquant les conditions optimales mises au point (procédé A ou procédé B), le produit bis-indolizine souhaité est obtenu avec un rendement satisfaisant (schéma 76).

#### Schéma 76

## II.12- Cas des pyrrolo[1,2-a]pyrazines

Récemment, Park et *al*.<sup>129</sup> ont rapporté l'arylation directe sur la position 6 de la pyrrolo[1,2-a]pyrazine en exploitant le système catalytique (PPh<sub>3</sub>)<sub>2</sub>Pd(Cl)<sub>2</sub>. Outre le fait que le produit désiré est obtenu avec un bon rendement (Schéma 77), cette séquence constitue le seul exemple publié jusqu'à présent concernant l'arylation en C6 des pyrrolo[1,2-a]pyrazines.

<sup>&</sup>lt;sup>128</sup> B. Koszarna, R. Matczak, M. Krzeszewski, O. Vakuliuk, J. Klajn, M. Tasior, J. T. Nowicki, D. T. Gryko, Tetrahedron 2014, 70, 225.

<sup>&</sup>lt;sup>129</sup> S. Park, Y. Jung, I. Kim, *Tetrahedron*. **2014**, 70, 7534.

Schéma 77

#### II.13- Cas des benzothiadiazoles et benzotriazoles

Marder et *al*.<sup>130</sup> ont fait état de la double arylation directe du benzothiadiazole au départ de 4-bromobenzènes. Cette séquence, catalysée par le Pd(OAc)<sub>2</sub> en présence de P<sup>t</sup>Bu<sub>2</sub>CH<sub>3</sub>.HBF<sub>4</sub>, conduit au produit diarylé symétrique avec un bon rendement (Schéma 78). D'autres auteurs ont appliqué la même méthode pour la formation de benzothiadiazoles diarylés dissymétriques. Dans l'exemple du schéma 73, la synthèse réalisée en « one pot » permet d'obtenir le produit diarylé souhaité avec un bon rendement (Schéma 78).

Schéma 78

Par ailleurs, Zhang et ses collègues<sup>131</sup> ont montré que les benzothiadiazoles fluorés (DFBT) ainsi que les benzotriazoles également fluorés étaient susceptibles de subir une arylation directe avec des iodures d'aryles et d'hétéroaryles (Schéma 79).

<sup>&</sup>lt;sup>130</sup> J. Zhang, W. Chen, A. J. Rojas, E. V. Jucov, T. V. Timofeeva, T. C. Parker, S. Barlow, S. R. Marder, *J. Am. Chem. Soc.* **2013**, *135*, 16376.

<sup>&</sup>lt;sup>131</sup> C.-Y. He, C.-Z. Wu, F.-L. Qing, X. Zhang, J. Org. Chem. **2014**, 79, 1712.

#### Schéma 79

## II.14- Cas des benzofuranes et benzothiophènes

#### II.14.1- Arylation en position 2

La littérature fait état de plusieurs travaux concernant l'arylation en position 2 du benzofurane et du benzothiophène (schèma 80).

- ➤ Correia et ses collaborateurs <sup>132</sup> ont rapporté l'arylation directe régiosélective du benzofurane catalysée par le palladium en utilisant un sel de benzènediazonium comme partenaire de couplage (méthode A).
- ➤ Guchhait et ses collaborateurs <sup>133</sup> ont montré que le benzofurane pouvait subir une arylation en position 2 avec un acide arylboronique sous irradiation micro-ondes (méthode B).
- ➤ Une arylation en position 2 catalysée par le cuivre tant du benzofurane que du benzothiophène a été également développée par Daugulis et *al*. <sup>134</sup> (méthode C).
- ➤ En 2009, Fagnou et ses collaborateurs<sup>117</sup> ont décrit une réaction d'arylation catalysée par le palladium pour accéder aux 2-arylbenzothiophènes. En l'absence d'acide pivalique, le taux de conversion observé s'avère très faible (environ 10% après 3 h). A noter que le rendement est amélioré en augmentant la quantité d'acide pivalique jusqu'à 30 moles %. (méthode D).
- ➤ Kappe et ses collaborateurs<sup>135</sup> ont rapporté l'arylation catalysée par le palladium sous irradiation micro-ondes, cette procédure permettant de réduire le temps de la réaction à seulement 30 min. Dans la plupart des exemples, l'utilisation de l'irradiation micro-ondes a permis la diminution de la quantité du catalyseur, tout en conservant son

<sup>&</sup>lt;sup>132</sup> A. F. P. Biajoli, E. T. da Penha, C. R. D. Correia, *RSC Advances* **2012**, 2, 11930.

<sup>&</sup>lt;sup>133</sup> S. K. Guchhait, M. Kashyap, S. Saraf, *Synthesis* **2010**, 1166.

<sup>&</sup>lt;sup>134</sup> H.-O. Do, R. M. K. Khan, O. Daugulis, *J. Am. Chem. Soc.* **2008**, *130*, 15185.

<sup>&</sup>lt;sup>135</sup> M. Baghbanzadeh, C. Pilger, C. O. Kappe, J. Org. Chem. **2011**, 76, 8138.

efficacité. De surcroît, lors des réactions d'arylations l'emploi de températures élevées se traduit par l'augmentation spectaculaire de la réactivité de certains substrats permettant la préparation de produits arylés non accessibles par chauffage classique (méthode E).

- L'arylation en C2 du benzothiophène faisant appel à une faible quantité de palladium a été rapportée par Doucet et *al.*<sup>136</sup>. Une chimiothèque de benzothiophènes a été ainsi élaborée au départ de divers bromures d'aryles ou hétéroaryles. A noter que les meilleurs rendements ont été obtenus lors de l'utilisation des bromures d'aryles déficients en électrons (méthode F).
- ➤ Doucet et *al.*<sup>136</sup> ont également rapporté une (hétéro)arylation en position 2 du benzothiophène en utilisant la 8-bromoquinoléine comme agent arylant. Les conditions réactionnelles ainsi mises au point s'avèrent également efficaces pour l'arylation en C3 de l'imidazo [1,2-a] pyridine (méthode G).
- ➤ Récemment, le groupe de Nolan<sup>137</sup> a décrit l'arylation directe du benzothiophène catalysée par [Pd(SIPr)(cin)Cl] [SIPr = 1,3-bis (2,6-diisopropylphényl)-4,5-dihydroimidazol-2-ylidène]. Ces auteurs ont également appliqué leurs conditions pour l'arylation directe en position 3 des imidazo[1,2-a]pyridines (méthode H).

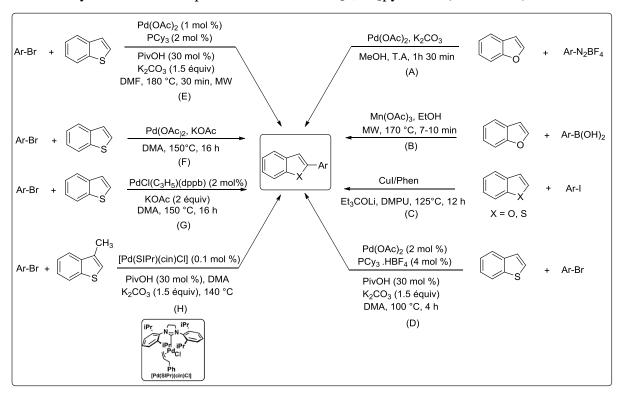



Schéma 80

<sup>&</sup>lt;sup>136</sup> L. Zhao, C. Bruneau, H. Doucet, *Tetrahedron* **2013**, *69*, 7082.

<sup>&</sup>lt;sup>137</sup> A. R. Martin, A. Chartoire, A. M. Z. Slawin, S. P. Nolan, *Beilstein J. Org. Chem.* **2012**, *8*, 1637.

#### II.14.2- Arylation en position 3

Les benzofuranes et benzothiophènes ont fait l'objet d'un grand nombre de travaux concernant leur arylation en position 3, d'où plusieurs articles concernant cette réaction dans la littérature (schéma 81).

- ➤ En 2010, Fagnou et ses collègues <sup>138</sup> ont publié plusieurs exemples d'arylation directe catalysée par le palladium en C-3 du benzofurane, substitué par un atome de chlore sur le sommet 2 et ce, au départ d'halogénures d'(hètero)aryle (méthode A).
- La même année, Doucet et ses collègues<sup>139</sup> ont étudié la réactivité des benzofuranes substitués en 2 vis à vis des réactions d'arylation en C3. Ces auteurs ont remarqué qu'une large gamme de groupes fonctionnels tels que les motifs éthyle, butyle, formyle, acétyle voire hydroxyéthyle sur la position 2 des benzofuranes sont bien tolérés (méthode B).
- Récemment, le même groupe 140 a indiqué que l'arylation pallado-catalysée du 2éthylbenzofurane avec des entités bromoaryliques en employant le 1,4-bis (diphénylphosphino)butane (dppb) en tant que ligand conduit aux 3-aryl-2éthylbenzofuranes avec un rendement modéré. Ces conditions de réaction ont également été appliquées pour l'arylation en C2 du benzoxazole et du benzothiophène, cette procédure conduisant aux produits attendus avec des rendements modestes (méthode C).
- ➤ En 2012, toujours le même groupe 141 a publié de nouvelles conditions pour l'arylation en C3 du 2-éthylbenzofurane avec des chlorures d'aryle en utilisant le système catalytique Pd(OAc)₂/ sylphos (méthode D).
- ➤ Dans la même année, Bertounesque et ses collègues 142 ont appliqué des conditions similaires à celles développées par le groupe de Fagnou 143 pour l'arylation en C3 du 2-benzoylbenzofurane (méthode E).
- ➤ Le groupe de Correia<sup>132</sup> a appliqué les conditions d'arylation directe mises au point avec le benzofurane pour l'arylation en C3 du benzothiophène. Dans ce cas, le tétrafluoroborate de *p*-méthoxybenzènediazonium a été utilisé comme partenaire de

<sup>&</sup>lt;sup>138</sup> B. Liegault, I. Petrov, S. I. Gorelsky, K. Fagnou, *J. Org. Chem.* **2010**, *75*, 1047.

<sup>&</sup>lt;sup>139</sup> M. Ionita, J. Roger, H. Doucet, *ChemSusChem.* **2010**, *3*, 367.

<sup>&</sup>lt;sup>140</sup> M. Baloch, D. Roy, S. Bensaid, V. Guerchais, H. Doucet, Eur. J. Inorg. Chem. 2012, 4454.

<sup>&</sup>lt;sup>141</sup> D. Roy, S. Mom, S. Royer, D. Lucas, J.-C. Hierso, H. Doucet, ACS Catal. **2012**, 2, 1033.

<sup>&</sup>lt;sup>142</sup> A. Carrer, D. Brinet, J.-C. Forent, P. Rousselle, E. Bertounesque, J. Org. Chem. 2012, 77, 1316.

<sup>&</sup>lt;sup>143</sup> B. Liegault, I. Petrov, S. I. Gorelsky, K. Fagnou, *J. Org. Chem.* **2010**, *75*, 1047.

- couplage en présence de Pd(OAc)<sub>2</sub> comme catalyseur. Cette séquence permet d'obtenir le produit désiré avec un bon rendement (méthode F).
- ➤ En 2010, Fagnou et ses collaborateurs 143 ont appliqué les conditions réactionnelles optimisées pour les benzofuranes sur le 2-chlorobenzothiophène, dans le but de réaliser l'arylation directe en position 3 du benzothiophène (méthode G). La même méthodologie a été mise en œuvre avec succès pour réaliser l'arylation en positions C-2 et C-3 de l'indole.

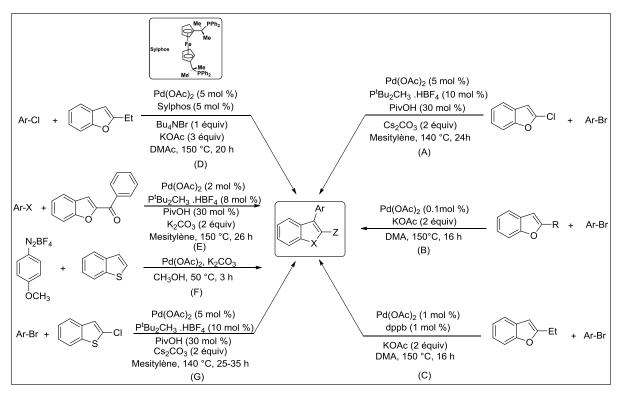



Schéma 81

Dans le cadre de ce paragraphe, nous pouvons aussi citer les travaux d'arylation réalisés par Rossi et  $al^{144,145}$ , Ellman et  $al^{146}$ , Miura et  $coll^{147}$ , Shao et  $al^{148}$ , Daugulis et  $al^{134}$ , Itami et  $al^{149}$ , Guchhait et  $coll^{120,133}$ , ainsi que Abdo et  $al^{150}$  en position 2 des benzimidazoles, des benzothiazoles, des benzoxazoles, et des thièno [3,4-b]pyrazines.

<sup>&</sup>lt;sup>144</sup> F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, *Tetrahedron* **2007**, *63*, 1970.

<sup>&</sup>lt;sup>145</sup> F. Bellina, S. Cauteruccio, R. Rossi, Eur. J. Org. Chem. **2006**, 1379.

<sup>&</sup>lt;sup>146</sup> J. C. Lewis, A. M. Berman, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. **2008**, 130, 2493.

<sup>&</sup>lt;sup>147</sup> T. Yoshizumi, H. Tsurugi, T. Satoh, M. Miura, *Tetrahedron Lett.* **2008**, 49, 1598.

<sup>&</sup>lt;sup>148</sup> Z.-S. Gu, W.-X. Chen, L.-X. Shao, *J. Org. Chem.* **2014**, 79, 5806.

<sup>&</sup>lt;sup>149</sup> J. Canivet, J. Yamaguchi, I. Ban, K. Itami, *Org. Lett.* **2009**, *11*, 1733.

<sup>&</sup>lt;sup>150</sup> N. I. Abdo, A. A. El-Shehawy, A. A. El-Barbary, J. S. Lee, Eur. J. Org. Chem. **2012**, 5540.

## **III. Conclusion**

L'utilisation de l'arylation directe pour former la liaison Csp<sup>2</sup>-Csp<sup>2</sup> s'est révélée un défi continu en chimie organique au cours des vingt dernières années. Les différents métaux exploités (ruthénium, rhodium, cuivre, palladium), ainsi que la variété et la disponibilité des ligands, apportent à cette méthodologie polyvalence et efficacité.

En particulier, l'exploration de nouveaux catalyseurs s'est développée considérablement pour la formation d'une large gamme de composés possédant une liaison aryle-aryle, arylehétéroaryle voire hétéroaryle-hétéroaryle.

Finalement, les nombreux développements de cette réaction (synthèse et matériels) ont largement montré son grand potentiel. De ce fait, elle est devenue un outil utile tant pour des applications académiques et industrielles diverses que pour la synthèse de composés d'intérêt biologique.

| Chapitre II : Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura |  |  |  |
|----------------------------------------------------------------------------------|--|--|--|
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
| CALANTOT II                                                                      |  |  |  |
| CHAPITRE II                                                                      |  |  |  |
| Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura               |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
|                                                                                  |  |  |  |
| Cette partie a fait l'objet d'une publication :                                  |  |  |  |
|                                                                                  |  |  |  |
| Microwave-assisted Suzuki-Miyaura Cross-Coupling of Free (NH) 3-Bromoindazoles   |  |  |  |
|                                                                                  |  |  |  |
| A. Ben-Yahia, M. Naas, N. El Brahmi, S. El Kazzouli, E.M. Essassi, J-P. Majoral, |  |  |  |
| G. Guillaumet, Current Org. Chem. 2013, 17, 304.                                 |  |  |  |
|                                                                                  |  |  |  |

## I. Introduction

Compte tenu de notre expérience, nous avons décidé de débuter notre approche par le couplage de Suzuki-Miyaura, qui nous semble être une stratégie des plus intéressantes.

Lors de ce projet, nous avons imaginé une voie d'accès aux indazoles substitués en 3, possédant un hydrogène sur l'azote situé en 1 et ce, *via* une méthode régiosélective, simple et efficace mettant en jeu le couplage entre deux carbones sp<sup>2</sup>. Dans notre cas la réaction a lieu entre le 3-halogénoindazole et des acides boroniques aryliques (ou hétéroaryliques) en utilisant le palladium comme catalyseur (figure 18).

Figure 18

# II. Couplage de Suzuki-Miyaura régiosélectif en position 3d'indazoles possédant un hydrogène sur l'azote situé en position 1

## II.1 Préparation des indazoles de départ

La première étape de cette séquence réside dans la préparation de deux indazoles de départ. En effet tous les produits sont commerciaux exception faite du 4-nitroindazole 3 et du 5-méthoxyindazole 6 qui sont obtenus avec de bons rendements selon les deux schémas réactionnels ci-dessous.

Le produit **3** est préparé par traitement de la 2-méthyl-3-nitroaniline **1** avec du nitrite de sodium dans l'acide acétique à température ambiante. Cette réaction est basée sur la diazotation du groupe amino et le couplage subséquent avec le substituant méthyle en position ortho (schéma 82)<sup>13</sup>.

Chapitre II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

#### Schéma 82

Le produit **6** a été préparé par diazotation de la 4-méthoxy-2-méthylaniline **4** avec une solution aqueuse de nitrite de sodium dans l'acide tétrafluoroborique (solution à 50% dans l'eau) afin d'obtenir le tétrafluoroborate de méthylbenzènediazonium correspondant **5** avec de bons rendements. Ce dernier se cyclise en présence d'acétate de potassium et d'éther 18-couronne-6 dans le chloroforme anhydre (schéma 83)<sup>39</sup>.

#### Schéma 83

## II-2 Synthèse d'indazoles bromés en position 3

L'étape suivante de cette séquence réactionnelle consiste en une réaction de bromation. Le choix des dérivés de l'indazole a été fait en fonction de leur disponibilité commerciale et de leur intérêt structural.

Cette réaction est conduite dans les conditions déjà décrites par notre équipe<sup>151</sup> et celle de Vichard<sup>152</sup> à savoir en présence de 1,5 équivalents de *N*-bromosuccinimide (NBS) à reflux de l'acétonitrile. Les composés bromés **7-12** sont générés avec de bons rendements compris entre 71 et 79 % (tableau 1).

<sup>&</sup>lt;sup>151</sup> S. El Kazzouli, L. Bouissane, M. Khouili, G. Guillaumet, *Tetrahedron Lett.* **2005**, *46*, 6163.

<sup>&</sup>lt;sup>152</sup> B. Cottyn, F. Acher, B. Ramassamy, L. Alvey, M. Lepoivre, Y. Frapart, D. Stuehr, D. Mansuy, J-L. Boucher, D. Vichard, *Bioorg. Med. Chem.* **2008**, *16*, 5962.

Chapitre II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

## Schéma 84

Tableau 1 : Préparation des indazoles bromés

| Entrée | PD <sup>a</sup> | Indazoles                               | Rendement (%) <sup>b</sup> |
|--------|-----------------|-----------------------------------------|----------------------------|
| 1      | 7               | Br<br>N<br>N<br>H<br>13                 | 79                         |
| 2      | 8               | NO <sub>2</sub> Br<br>N<br>N<br>H<br>14 | 74                         |
| 3      | 9               | O <sub>2</sub> N N N H                  | 76                         |
| 4      | 10              | $O_2N$ $N$ $H$ $16$                     | 73                         |
| 5      | 11              | Br<br>N<br>N<br>NO <sub>2</sub><br>17   | 71                         |

| 6 12 | H <sub>3</sub> CO N N H 18 | 77 |
|------|----------------------------|----|
|------|----------------------------|----|

<sup>&</sup>lt;sup>a</sup> Produit de départ

### III. Fonctionnalisation de l'indazole par couplage de type Suzuki-Miyaura

Les indazoles substitués en position 3 usuellement obtenus par différentes réactions de couplage 74-78,153,154 sont à la base de plusieurs médicaments et s'avèrent généralement d'intérêt pharmaceutique dans une grande variété de domaines thérapeutiques. Notre équipe a récemment rapporté de nouvelles méthodes pour la synthèse et la fonctionnalisation des positions 3 et 4 des systèmes cycliques indazoliques. En parallèle, nos collègues ont également décrit de nouveaux dérivés d'indazoles contenant un groupement sulfonamide en position 7. Ces dérivés sont dotés de cytotoxicités significatives vis-à-vis tant de diverses cellules cancéreuses humaines (cancers du côlon et la prostate) que de cellules cancéreuses murines (leucémie), l'56 l'analogue le plus actif de toute la série s'avèrant le composé I non substitué sur l'azote 1 (figure 19).

$$H_3$$
CO  $CH_3$   $CH_3$   $CO$   $COMPOSÉ I  $CI$   $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $COMPOSÉ I$   $COMPOSÉ I$   $COMPOSÉ I  $CO$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 

Figure 19 : indazole (NH) possédant une activité anti-proliférative significative sur la lignée cellulaire murine L1210.

<sup>&</sup>lt;sup>b</sup> Rendement en produit isolé après chromatographie sur gel de silice

a) D. W. Gordon, *Synlett.* **1998**, 1065. b) W. M. Welch, C. E. Hanau, W. M. Whalen, *Synthesis.* **1992**, 937.
 a) A. Amautu, V. Collot, J. C. Ros, C. Alayrac, B. Witulski, S. Rault, *Tetrahedron Lett.* **2002**, 43, 2695. b) V. Collot, D. Varlet, S. Rault, *Tetrahedron Lett.* **2000**, 41, 4363. c) A. Fraile, M. R. Martín, J-L. García Ruano, J.A. Díaz, E. Arranz, *Tetrahedron.* **2011**, 67, 100.

<sup>&</sup>lt;sup>155</sup> L. Bouissane, S. El Kazzouli, E.M.; Rakib, M. Khouili, G. Guillaumet, *Tetrahedron.* 2005, 61, 8218.

<sup>&</sup>lt;sup>156</sup> L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E.M. Rakib, M. Khouili, G. Guillaumet, *Bioorg. Med. Chem.* **2006**, *14*, 1078.

Lors de travaux antérieurs, notre équipe et d'autres ont montré que les indazoles protégés par le groupement Boc ne sont pas stables dans les conditions du couplage de Suzuki-Miyaura 106,155,156,157,158. Dans le cas de notre groupe, les collègues ont remarqué que seul l'indazole non substitué en N1 est obtenu en raison du clivage du motif protecteur Boc dans les conditions réactionnelles basiques <sup>159</sup>. Notre équipe a également montré que même l'utilisation du motif p-toluènesulfonyle comme entité N-protectrice de l'indazole s'avère inefficace. 158 Dans ce cas, la réaction de couplage est incomplète en raison de la coupure partielle du groupement protecteur dans les conditions standards du couplage de Suzuki-Miyaura.

La réaction du couplage est uniquement possible lorsque l'amine est méthylé ou substitué par un motif protecteur comme le p-méthoxybenzyle. Toutefois, dans le cas du pméthoxybenzyle, une étape de déprotection est nécessaire pour générer le 3-arylindazole correspondant avec un NH libre, ce qui nécessite des conditions de réaction dures, pouvant s'avérer incompatibles avec différents entités chimiques (groupes labiles) ou conduire à la décomposition du squelette indazolique. A noter que le groupe de S. Rault a également signalé que des motifs protecteurs sont nécessaires pour mener à son terme le couplage de Suzuki<sup>72</sup>. Récemment quelques équipes ont décrit des protocoles pour la réaction de couplage de Suzuki sur les 3-iodoindazoles possédant un hydrogène en position 1. Ces synthèses ont été réalisées soit en chauffage classique 160 soit sous irradiations micro-ondes 161. Lors de travaux d'exemplification, quelques exemples de couplage de Suzuki-Miyaura menés en chauffage classique sur le 3-bromoindazole doté d'un NH libre ont également été publiés mais malheureusement, les rendements obtenus sont souvent très faibles 162.

Dans la continuité de nos efforts sur la conception et la synthèse d'indazoles biologiquement actifs et afin de réduire le nombre d'étapes nécessaires pour la synthèse des

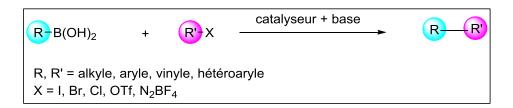
<sup>&</sup>lt;sup>157</sup> J. M. Salovich, C. W. Lindsley, C. R. Hopkins, *Tetrahedron Lett.*, **2010**, *51*, 3796.

<sup>&</sup>lt;sup>158</sup> a) S. El Kazzouli, S. Berteina-Raboin, L. Agrofoglio, Nucleosides, Nucleotides Nucleic Acids 2007, 26, 1395-1398. b) T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073. c) T. Delaunay, P. Genix, M. Es-Sayed, J-P. Vors, N. Monteiro, G. Balme, Org. Lett. 2010, 12, 3328.

<sup>&</sup>lt;sup>159</sup> S. El Kazzouli, J. Koubachi, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Tetrahedron Lett.* 2006, 47,

<sup>8575.

160</sup> a) D. Spinks, L.S. Torrie, S. Thompson, J.R. Harrison, J.A. Frearson, K.D. Read, A.H. Fairlamb, P.G. Wyatt,


<sup>&</sup>lt;sup>161</sup> a) H. An, N-J. Kim, J-W. Jung, H. Jang, J-W. Park, Y-G. Suh, *Bioorg. Med. Chem. Lett.* **2011**, 21, 6297. b) C. M. Harris, A. M. Ericsson, M. A. Argiriadi, C. Barberis, D. W. Borhani, A. Burchat, D. J. Calderwood, G. A. Cunha, R. W. Dixon, K. E. Frank, E. F. Johnson, J. Kamens, S. Kwak, B. Li, K. D. Mullen, D. C. Perron, L. Wang, N. Wishart, X. Wu, X. Zhang, T. R. Zmetra, R. V. Talanian, Bioorg. Med. Chem. Lett. 2010, 20, 334. <sup>162</sup> S. S. Bhagwat, Y. Satoh, S. T. Sakata, C. A. Buhr, R. Albers, J. Sapienza, V. Plantevin, Q. Chao, K. Sahasrabudhe, R. Ferri, US Patent, Appl. Publ., 20040127536 A1, 01 Jul 2004. Chem. Abstr. 2004, 89085, 533982.

indazoles avec l'azote non substitué, sachant que trois étapes sont généralement utilisées dans la littérature: i) la protection de N1, ii) le couplage croisé de Suzuki-Miyaura, iii) la déprotection de N1), nous avons développé une méthode nouvelle et simple pour le couplage de Suzuki-Miyaura directement sur les indazoles avec NH libres.

### III.1 Rappel bibliographique sur le couplage de Suzuki-Miyaura

Les réactions de couplages croisés, permettant la formation de liaisons C-C, sont devenues des réactions essentielles de la chimie organique. Ces transformations trouvent de nombreuses applications dans le domaine pharmaceutique ou dans le domaine des matériaux. Pour cette raison en 2010, Suzuki, Negishi et Heck ont reçu le prix Nobel de la chimie pour leurs travaux sur les couplages pallado-catalysés. 164

La réaction de Suzuki-Miyaura, comme son nom l'indique, fut découverte en 1981 par Akira Suzuki et Norio Miyaura. Elle permet de coupler les dérivés halogénés ou les triflates d'(hétéro)aryles, de vinyles voire les sels de diazoniums avec des dérivés du bore en présence d'un catalyseur organométallique et d'une base (schéma 85).



#### Schéma 85

C'est l'une des réactions de couplage les plus utilisées actuellement car présentant de nombreux avantages. Il existe tout d'abord plusieurs dérivés du bore de nature diverse (aryles, hétéroaryles, vinyles, alkyles...) utilisables pour la réaction de Suzuki-Miyaura : acides boroniques, esters boroniques, trifluoroborates de potassium... Ces composés sont même, pour la plupart, disponibles commercialement. De plus, ces dérivés, tout comme les sousproduits de la réaction, sont facilement séparables et sont peu toxiques, comparés à leurs analogues organostannylés. Ils possèdent également une meilleure stabilité que les zinciques ou les magnésiens. Les conditions de la réaction sont, de surcroît, relativement douces, puisque certaines réactions sont possibles à température ambiante et avec uniquement des

75

<sup>a) M. M. Heravi, E. Hasshemi,</sup> *Tetrahedron.* 2012, 68, 9145. b) J. G. Vries, *Top. Organomet. Chem.* 2012, 42,
c) S. Kotha, K. Lahiri, D. Kashinath, *Tetrahedron.* 2006, 58, 9633. d) S. R. Chemler, D. Trauner, S. J. Danishefsky, *Angew. Chem. Int. Ed.* 2001, 40, 4544.

<sup>&</sup>lt;sup>164</sup> A. Suzuki, Angew. Chem. Int. Ed. **2011**, 50, 6722.

quantités catalytiques du palladium A noter qu'elles sont même réalisables pour bon nombre d'entre elles à l'échelle industrielle.

La réaction de Suzuki-Miyaura est universelle puisqu'elle permet de coupler des synthons du bore aryliques, hétéroaryliques, vinyliques, voire même alkylés, avec tous types de dérivés halogénés, triflates ou diazoniums. Cette réaction n'est pas très sensible à l'encombrement stérique et permet d'obtenir une large gamme de produits avec des fonctionnalisations très variées. En effet, il est possible de synthétiser toutes sortes de composés : aryles-aryles, aryles-vinyles, aryles-alkyles, vinyles-vinyles, vinyles-alkyles, alkyles-alkyles...

Le mécanisme de la réaction de Suzuki-Miyaura qui a été étudié par différents groupes, notamment *via* la spectrométrie de masse, <sup>165</sup> met en jeu le cycle catalytique proposé (figure 20). Ce mécanisme est valable pour la plupart des réactions de couplage C-C utilisant un catalyseur au palladium.

\_

<sup>&</sup>lt;sup>165</sup> a) G. B. Smith, G. C. Dezeny, D. L. Hughes, A. O. King, T. R. Verhoeven, *J. Org. Chem.* **1994**, *59*, 8151. b) A. O. Aliprantis, J. W. Canary, *J. Am. Chem. Soc.* **1994**, *116*, 6985.

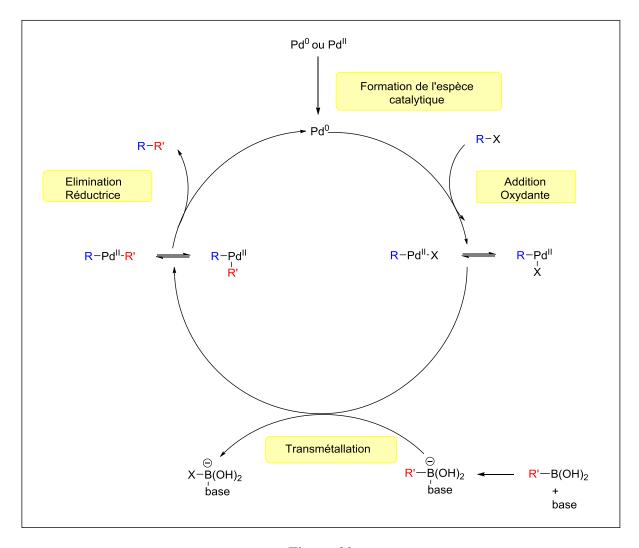



Figure 20

- L'addition oxydante : Après formation de l'espèce catalytique *in situ*, l'addition oxydante des dérivés halogénés aryliques ou vinyliques conduit généralement au complexe de Pd<sup>II</sup> *trans*. Dans le cas des dérivés bromés, il a été montré que ce stade est l'étape limitante de la réaction tandis que pour les dérivés iodés, la transmétallation est la phase limitante. La présence d'un groupement électro-attracteur à proximité du groupement halogéné peut permettre dans le cas des dérivés aryliques et vinyliques d'augmenter la vitesse de l'addition oxydante. Dans le cas des dérivés alkylés possédant un hydrogène en position β, l'addition oxydante s'avère très lente et peut, de ce fait, être suivie d'une β-H élimination.
- La transmétallation: La présence d'une base est nécessaire à l'étape de transmétallation, dont le mécanisme est moins bien connu. En effet, dans la mesure où la différence d'électronégativité entre l'atome de bore et l'atome de carbone est assez faible, étant donné que le fragment organique est assez peu nucléophile, la

transmétallation s'avére difficile. L'utilisation d'une base permet de faciliter la phase de transformation en sel, ce qui augmente la nucléophilie du groupement R' de l'acide boronique et donc accélère son transfert sur le palladium.

L'élimination réductrice : Après le stade de transmétallation, l'élimination réductrice entre les deux fragments organiques en position *cis* permet d'obtenir le produit de couplage et de régénérer le catalyseur Pd<sup>0</sup>. A noter que le composé *trans* ne réagit qu'après isomérisation et obtention du composé *cis*. <sup>166</sup>

L'efficacité de la réaction de Suzuki, appliquée à un substrat donné, est dépendante de plusieurs paramètres que sont la base, le solvant, la source de palladium et les ligands employés.

### III.2 Optimisation des conditions de couplage

Nous avons commencé par l'optimisation du couplage de Suzuki-Miyaura sur le 3-bromo-5-nitro-1*H*-indazole **15.** Pour ce faire, plusieurs conditions ont été testées (schéma 86, tableau 2).

Schéma 86

Dans une première tentative lors du couplage de Suzuki-Miyaura<sup>167</sup>, nous avons décidé d'explorer différentes méthodes en étudiant l'effet du système de chauffage, du solvant, de la base et du catalyseur. Comme prévu, aucune réaction n'a été obtenu soit sous chauffage classique soit sous irradiation micro-ondes à 100 °C pendant 1 heure (entrées 1 et 2, tableau 2). Quand le mélange réactionnel est chauffé à 120 °C sous irradiation micro-ondes dans un mélange de 1,4-dioxane / éthanol comme solvant, le produit désiré **19** est isolé avec un rendement de 30% (entrée 3, tableau 2). Dans cet essai nous avons observé la présence d'une

<sup>&</sup>lt;sup>166</sup> A. Yamamoto, *Organotransition Metal Chemistry -Fundamental Concepts and Applications*. Wiley :New York ed.; **1986**.

<sup>&</sup>lt;sup>167</sup> W. Stadlbauer, Sci. Synth. **2002**, 12, 227.

quantité importante de produit de départ **15** (58% étant récupérés après purification par chromatographie sur gel de silice).

Lorsque le mélange réactionnel est irradié à 140 °C, dans le même mélange de solvants, le rendement est augmenté (entrée 4, tableau 2). Par contre, le rendement de la réaction a diminué à 25% lorsque le dioxane est utilisé comme solvant (entrée 5, tableau 2). Nous avons obtenu une amélioration du rendement à 67% quand un mélange de toluène / EtOH est employé en tant que solvant (entrée 6, tableau 2). Enfin, une conversion complète est constatée lorsque le mélange réactionnel est irradié à 140 °C pendant 1 h dans un mélange de 1,4-dioxane / EtOH / H<sub>2</sub>O. Dans ce cas, le produit désiré est isolé avec un rendement de 78% (entrée 7, tableau 2). Nous avons ensuite exploré différentes bases inorganiques telles que le carbonate de potassium et le carbonate de sodium. Nous avons constaté que K<sub>2</sub>CO<sub>3</sub> donne quasiment le même rendement que celui obtenu en utilisant le Cs<sub>2</sub>CO<sub>3</sub> (entrée 8, tableau 2); en revanche, le Na<sub>2</sub>CO<sub>3</sub> a donné un rendement plus faible (45%, entrée 9, tableau 2). Nous avons étudié également d'autres catalyseurs à base de palladium tel que Pd(OAc)<sub>2</sub>/ Ph<sub>3</sub>P et PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>. Ces deux catalyseurs ont donné des rendements légèrement inférieurs à ceux obtenus avec Pd(PPh<sub>3</sub>)<sub>4</sub> (entrées 10 et 11, tableau 2).

Pour vérifier si la réaction pouvait être réalisée sous chauffage classique en fournissant une énergie similaire à celle obtenue en utilisant le système de micro-ondes, nous avons décidé d'effectuer la réaction de couplage croisé dans un tube scellé à 140 °C. Comme attendu le produit désiré est obtenu, mais une diminution du rendement est observée (61%, entrée 12, tableau 2). Nous avons noté dans ce cas que le temps de la réaction (2 heures) est plus long que celui observé lors de l'utilisation des micro-ondes (1 heure). Ce résultat montre l'effet positif de l'irradiation micro-onde sur les rendements et les temps de la réaction.

**Tableau 2**: Optimisation des conditions de couplage

| Entrée | Catalyseur                         | Base                            | Temp. °C            | Solvant (v/v)      | Rdt %  |
|--------|------------------------------------|---------------------------------|---------------------|--------------------|--------|
| 1      | Pd(PPh <sub>3</sub> ) <sub>4</sub> | Cs <sub>2</sub> CO <sub>3</sub> | reflux              | Dioxane/EtOH (3/1) | 0      |
| 2      | Pd(PPh <sub>3</sub> ) <sub>4</sub> | $Cs_2CO_3$                      | 100 MW <sup>b</sup> | Dioxane/EtOH (3/1) | Traces |
| 3      | Pd(PPh <sub>3</sub> ) <sub>4</sub> | $Cs_2CO_3$                      | 120 MW <sup>b</sup> | Dioxane/EtOH (3/1) | 30     |
| 4      | Pd(PPh <sub>3</sub> ) <sub>4</sub> | $Cs_2CO_3$                      | 140 MW b            | Dioxane/EtOH (3/1) | 48     |
| 5      | Pd(PPh <sub>3</sub> ) <sub>4</sub> | $Cs_2CO_3$                      | 140 MW              | Dioxane            | 25     |

Chapitre II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

| 6  | $Pd(PPh_3)_4$                      | $Cs_2CO_3$                      | $140 \mathrm{MW}^\mathrm{b}$ | Toluène/EtOH/H <sub>2</sub> O (3/1/0.5) | 67 |
|----|------------------------------------|---------------------------------|------------------------------|-----------------------------------------|----|
| 7  | Pd(PPh <sub>3</sub> ) <sub>4</sub> | Cs <sub>2</sub> CO <sub>3</sub> | $140~\mathrm{MW}^\mathrm{b}$ | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 78 |
| 8  | $Pd(PPh_3)_4$                      | $K_2CO_3$                       | $140 \text{ MW}^{\text{b}}$  | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 75 |
| 9  | $Pd(PPh_3)_4$                      | Na <sub>2</sub> CO <sub>3</sub> | $140 \text{ MW}^{\text{b}}$  | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 45 |
| 10 | Pd(OAc) <sub>2</sub>               | Cs <sub>2</sub> CO <sub>3</sub> | $140 \text{ MW}^{\text{b}}$  | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 76 |
| 11 | $PdCl_2(PPh_3)_2$                  | Cs <sub>2</sub> CO <sub>3</sub> | $140 \text{ MW}^{\text{b}}$  | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 74 |
| 12 | Pd(PPh <sub>3</sub> ) <sub>4</sub> | Cs <sub>2</sub> CO <sub>3</sub> | 140°                         | Dioxane/EtOH/H <sub>2</sub> O (3/1/0.5) | 61 |

<sup>&</sup>lt;sup>a</sup> Chauffage conventionnel pendant 24h.

Nous avons alors exploré l'effet de la nature des acides boroniques mis en jeu en utilisant trois réactifs différents portant des groupements donneurs ou attracteurs d'électrons. Encore une fois, l'indazole avec l'azote non substitué **15** est utilisé comme produit de départ. Nous avons constaté que la durée de la réaction est de 60 min pour l'acide *p*-méthoxyphényle boronique (groupe donneur d'électrons), cependant, il est plus long (120 min) lors de l'utilisation de l'acide *p*-trifluorométhylphényle boronique (groupe attracteur d'électrons). Le temps de la réaction est intermédiaire puisque de 100 min pour l'acide phényle boronique. A noter que les composés **19-21** sont isolés avec des rendements compris entre 69 et 78% (tableau 3).

**Tableau 3** : Effet de la nature de l'acide boronique sur le temps de la réaction

|   | Entrée | R                 | Composé | Temps de la réaction (min) | Rdt(%) <sup>a</sup> |
|---|--------|-------------------|---------|----------------------------|---------------------|
| 1 | 1      | CH <sub>3</sub> O | 19      | 60                         | 78                  |
|   | 2      | Н                 | 20      | 100                        | 72                  |
|   | 3      | $CF_3$            | 21      | 120                        | 69                  |

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé après chromatographie sur gel de silice

#### III.3 Généralisation

Pour étudier les potentialités et les limites de cette nouvelle méthode, nous avons employé divers indazoles possédant un hydrogène en position 1 soit non substitués <sup>166</sup> (composé **7**, tableau 4), soit présentant des groupements nitro sur différents sommets du cycle

Irradiation micro-onde pendant 1 h.

<sup>&</sup>lt;sup>c</sup> Tube scellé pendant 2h.

aromatique <sup>168</sup> (composé **8-11**, tableau 1) soit un motif méthoxy en position 5 (composé **12**, tableau 4). Pour compléter le travail, nous avons utilisé divers acides boroniques contenant des groupes électro-donneurs ou électro-attracteurs, ces conditions restant parfaitement applicables pour l'introduction de motifs hétéroaryliques, tel que l'acide pyridin-3-ylboronique ou d'entités vinyliques comme l'acide (*E*)-styrylboronique (entrées 5 et 6, tableau 4). Tous les acides boroniques utilisés dans cette étude quel que soit le motif porté par le groupement aromatique (OCH<sub>3</sub>, CF<sub>3</sub>, CN et CO<sub>2</sub>Et), ont été couplés de manière efficace dans les conditions optimisées de la réaction (tableau 4), les rendements en produits isolés **22-29** s'avérant compris entre 71 et 83 %. A noter que, dans certains cas, des temps de réaction plus longs ont été nécessaires pour obtenir une conversion totale, en particulier lors de l'utilisation des acides boroniques substitués par des groupes attracteurs d'électrons ainsi que lors de l'utilisation de l'acide (*E*)-styrylboronique et de l'acide pyridin-3-ylboronique.

Comme ce travail était mené conjointement avec mon collègue Ben-Yahia, nous avons pu synthétiser une vingtaine de produits, mais je ne présenterai ici que les molécules préparées par mes soins.

Tableau 4 : Généralisation des conditions de couplage

$$R_{1} \stackrel{\text{II}}{=} N \\ N \stackrel{\text{R}_{2}\text{-B}(OH)_{2}}{=} (1.5 \text{ éq.}) \\ Pd(PPh_{3})_{4} (0.1 \text{ éq.}) \\ \hline 1,4\text{-Dioxane/EtOH/H}_{2}O (3/1/0.5) \\ Cs_{2}CO_{3} (1.3 \text{ éq.}), 140 °C, MW \\ \hline \textbf{7}, R_{1} = H \\ \textbf{12}, R_{1} = 5\text{-OCH}_{3} \\ \hline \end{cases} \qquad \textbf{22-29}$$

| Entrée | Produit de départ | Produit          | Temps | Rdt (%) <sup>a</sup> |
|--------|-------------------|------------------|-------|----------------------|
|        |                   |                  | (min) |                      |
| 1      | 7                 | OCH <sub>3</sub> | 60    | 75                   |

<sup>&</sup>lt;sup>168</sup> a) R. A. Bartsch, I-W. Yang, *J. Heterocycl. Chem.* **1984**, *20*, 1063. b) E. Noelting, *Berichte.* **1904**, *37*, 2556. c) E. Lohou, J. Sopkova de Oliveira Santos, P. Schumann-Bard, M. Boulouard, S. Stiebing, S. Rault, V. Collot, *Bioorg. Med. Chem.* **2012**, *20*, 5296.

81

Chapitre II : Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

| 2 | 7  | CF <sub>3</sub>                                 | 120 | 73 |
|---|----|-------------------------------------------------|-----|----|
| 3 | 7  | 0<br>N<br>N<br>H<br>24                          | 120 | 78 |
| 4 | 7  | CN<br>N<br>N<br>H<br>25                         | 120 | 82 |
| 5 | 7  | N<br>N<br>N<br>H                                | 120 | 71 |
| 6 | 7  | N N H 27                                        | 120 | 80 |
| 7 | 12 | OCH <sub>3</sub> H <sub>3</sub> CO  N  N  H  28 | 60  | 78 |

Chapitre II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

| 8 | 12 | H <sub>3</sub> CO N N H 29 | 120 | 83 |
|---|----|----------------------------|-----|----|

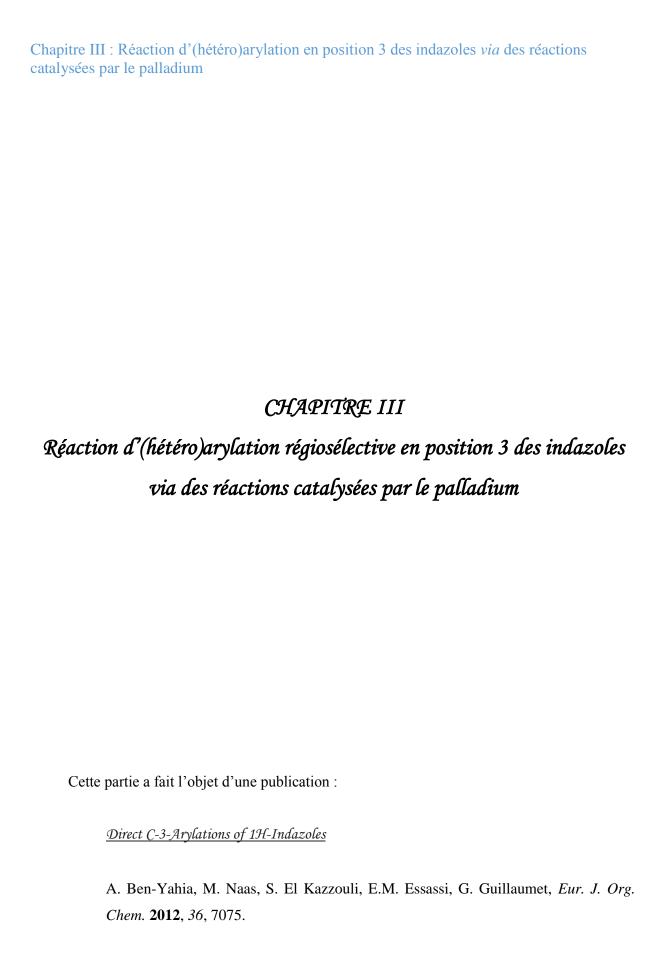
<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé après chromatographie sur gel de silice.

Nous avons alors décidé de vérifier si le 3-chloroindazole<sup>156</sup> **30** est réactif vis-à-vis des conditions du couplage de Suzuki-Miyaura développée par notre équipe.

Pour cette raison, nous avons traité l'indazole **30** disponible commercialement avec l'acide *p*-méthoxyphényle boronique pendant 2 heures sous irradiation micro-ondes en utilisant les conditions optimisées de la réaction. Le produit désiré **22** est isolé avec un rendement faible (32%), le produit de départ **30** étant récupéré avec un rendement de 48% (Schéma 87).

Schéma 87

### **IV. Conclusion**


En conclusion, nous avons testé différentes conditions afin de réaliser la réaction de Suzuki-Miyaura sur les indazoles non substitués sur l'azote, à savoir le système de chauffage, la température, le solvant, le catalyseur, la base, et le temps de la réaction. Une fois les conditions optimales mises au point, nous avons préparé différents indazoles substitués en position 3 possédant un hydrogène en position 1 et ce, directement à partir des 3-bromoindazoles. Cette méthode permet d'éviter deux étapes supplémentaires (la protection et la déprotection du groupe N1) nécessaires lors des conditions classiques du couplage de Suzuki-Miyaura décrites avant ce travail. Divers acides boroniques portant des groupes

### Chapitre II: Fonctionnalisation d'indazoles par couplage de type Suzuki-Miyaura

fonctionnels sensibles sont efficacement couplés à différents 3-bromoindazoles possédant un hydrogène en position 1 ce qui montre la généralité de notre méthode. Le couplage croisé est également réalisé en chauffage classique en utilisant un tube scellé ce qui confirme l'effet positif de l'énergie apportée par le système de chauffage (récipient fermé). Le couplage croisé sur le 3-chloroindazole non substitué sur l'azote est également possible mais le rendement de la réaction reste faible en raison d'une conversion seulement partielle du produit de départ. La méthode que nous avons développée est susceptible d'être utilisée pour réaliser des fonctionnalisations similaires sur différents autres systèmes hétérocycliques dont l'azote en position 1 n'est pas substitué.

-

<sup>&</sup>lt;sup>169</sup> A. Ben-Yahia, M. Naas, N. El Brahmi, S. El Kazzouli, E.M. Essassi, J-P. Majoral, G. Guillaumet, *Current Org. Chem.* **2013**, *17*, 304.



### I. Introduction

Dans la continuité du travail accompli, nous nous sommes intéressés dans ce chapitre à la préparation de nouveaux indazoles fonctionnalisés en position 3 *via* une réaction d'arylation, séquence qui constitue une méthode régiosélective, simple et efficace pour créer une liaison carbone sp<sup>2</sup>–carbone sp<sup>2</sup> entre la position 3 du noyau indazole et un dérivé arylique, voire hétéroarylique.

# II. Préparation des indazoles de départ : étape de Nméthylation ou N-arylation

La littérature rapporte un certain nombre de travaux concernant l'alkylation de l'indazole, <sup>170,171</sup> cette séquence permettant de conduire au produit N1-alkylé et/ou au produit N2-alkylé. Il a été démontré que la réaction dépend tant des conditions expérimentales que de la nature de l'halogénure d'alkyle utilisé.

Van Auwers et al.<sup>171</sup> ont montré que la réaction entre l'indazole et l'iodure d'éthyle conduit à un mélange de produits. Le rapport N1/N2 est : 94/6 à 37 °C, 76/24 à 50 °C et 50/50 à 100 °C. Quand la réaction est effectuée en présence d'une base, les deux régioisomères sont obtenus dans des rapports variables selon l'halogénure d'alkyle employé.

Dans le cadre de nos travaux, nous nous sommes intéressés à la réaction de méthylation. Pour ce faire, nous avons utilisé des conditions couramment employées au laboratoire <sup>151,155,156</sup> à savoir 3.0 équivalents d'hydroxyde de potassium, 1.5 équivalents d'iodométhane dans l'acètone à 0°C pendant 30 min (schéma 88). Ces conditions opératoires ont conduit aux deux produits régioisomères **31** et **32** avec des rendements respectifs de 71 % et 26 %.

<sup>&</sup>lt;sup>170</sup> K. V. Auwers, F. V. Meyenburg. *Chem. Ber.* **1891**, *24*, 2370.

<sup>171</sup> a) A. Stafford, M. Cheung, A. Boloor. *J. Org Chem*, **2003**, *68*, 4093. b) S. Gamage, J. A. Spicer, G. W. Rewcastle, J. Milton, S. Sohal, W. Dangerfield, P. Mistry, N. Vicker, P. A. Charlton, W. A. Denny. *J. Med. Chem.* **2002**, *45*, 740. c) A. Vasudevan, A. J. Souers, J. C. Freeman, M. K. Verzal, J. Gao, M. M. Mulhern, D. Wodka, J. K. Lynch, K. M. Engstrom, S. H. Wagaw, S. Brodjian, B. Dayton, D. H. Falls, E. Bush, M. Brune, R. D. Shapiro, K. C. Marsh, L. E. Hernandez, C. A. Collins, P. R. Kym, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 5293. d) H. C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W. M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. Andrade-Gordon, B. P. Damiano, B. E. Maryanoff, *J. Med. Chem.* **2005**, *48*, 1725. e) D. J. Slade, N. F. Pelz, W. Bodnar, J. W. Lampe, P. S. Watson, *J. Org. Chem.* **2009**, *74*, 6331. f) G. Luo, L. Chen, G. Dubowchik, *J. Org. Chem.*, **2006**, *71*, 5392.

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

#### Schéma 88

Le 1*H*-indazole a également été engagé dans une réaction de *N*-arylation. Cette séquence est conduite dans les conditions décrites dans la littérature<sup>172</sup>, à savoir 0.2 équivalent de CuI, 0.5 équivalent de bipyridine, K<sub>2</sub>CO<sub>3</sub> comme base, 1.2 équivalents d'iodure d'aryle au sein de la *N*-méthylpyrrolidine, sous irradiation micro-ondes à 200 °C, pendant 45 min (schéma 89). Les dérivés *N*-arylés sont générés avec de très bons rendements oscillant entre 88 et 92% (tableau 5, entrée 1-3).

Cul, Bipyridine

$$K_2CO_3$$
, NMP,

 $R = H, CH_3, CI$ 

R = H, CH<sub>3</sub>, CI

#### Schéma 89

Tableau 5 : Arylation des indazoles de départ

| Entrée | Produit de départ | R               | Rdt (%) <sup>a</sup> |
|--------|-------------------|-----------------|----------------------|
| 1      | 33                | Н               | 88                   |
| 2      | 34                | CH <sub>3</sub> | 90                   |
| 3      | 35                | Cl              | 92                   |

a) Rendement en produit isolé après chromatographie sur gel de silice.

# III- Fonctionnalisation des indazoles en position 3 par réaction de CH-arylation

Les indazoles substitués en position 3 obtenus *via* différentes réactions de couplage croisé<sup>71-73</sup> peuvent s'avérer des composés d'intérêt biologiques dans une large variété de domaines thérapeutiques.<sup>14</sup> Bien que plusieurs procédures aient été publiées pour la fonctionnalisation de la position 3 des systèmes indazoliques telles que les méthodes de

<sup>&</sup>lt;sup>172</sup> a) J. M. Salovich, C. W. Lindsley, C. R. Hopkins, *Tetrahedron Lett.* **2010**, *51*, 3796; b) Y.-C. Teo, F.-F. Yong, G. S. Lim, *Tetrahedron Lett.* **2011**, *52*, 7171.

### Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

couplage comme Suzuki, Heck et Sonogashira, aucun exemple de CH-arylation en série 1*H*-indazole n'a été décrit à ce jour. Seuls deux exemples de C-arylation inter-<sup>173</sup> et intramoléculaire<sup>174</sup> en position 3 de la série 2*H*-indazole ont été récemment publiés.

L'arylation directe d'hétéroarènes, a été largement étudiée par différents groupes de recherche, <sup>175,176</sup> y compris le nôtre <sup>151,155,156</sup>. Récemment, Greaney et *al.* ont décrit la CH arylation du 2*H*-indazole dans l'eau. <sup>173</sup> Bien que l'arylation en position 3 des 2*H*-indazoles fonctionne très bien, au moment où nous avons débuté ce travail, personne ne l'avait encore développé en série 1*H*-indazole et ce, eu égard à la faible réactivité de cette position 3 en série indazolique.

Dans la continuité de notre programme de recherche sur le système indazole <sup>151,155,156</sup> et sur les réactions d'activation CH, <sup>105,106,123,124,177</sup> nous avons donc décidé de développer ici une nouvelle méthode pour l'arylation directe et sélective de la position 3 du 1*H*-indazole.

<sup>177</sup>c) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Synthesis* **2008**, 2537; f) S. Grosse, C. Pillard, S. Massip, J. M. Leger, C. Jarry, S. Bourg, P. Bernard, G. Guillaumet, *Chem. Eur. J.* **2012**, *18*, 14943.

<sup>73</sup> C. A. Olamanika A. T.

<sup>&</sup>lt;sup>173</sup> S. A. Ohnmacht, A. J. Culshaw M. F. Greaney, *Org. Lett.* **2010**, *12*, 224.

<sup>&</sup>lt;sup>174</sup> B. Laleu, M. Lautens, J. Org. Chem. **2008**, 73, 9164.

<sup>&</sup>lt;sup>175</sup> Quelques revues concernant l'arylation d'hétéroarènes voir : a) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* **2007**, *36*, 1173; b) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* **2007**, *107*, 174; c) T. Satoh, M. Miura, *Chem. Lett.* **2007**, *36*, 200; d) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem.* **2009**, *121*, 9976; *Angew. Chem. Int. Ed.* **2009**, *48*, 9792; e) F. Bellina, R. Rossi, *Tetrahedron* **2009**, *65*, 10269; f) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* **2009**, *38*, 2447. g) K. Yuan, J.-F. Soulé, H. Doucet, *ACS Catalysis*. **2015**, *5*, 978. h) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, *Catal. Sci. Technol.* **2016**, in press.

<sup>&</sup>lt;sup>176</sup> Ouelques exemples sélectionnés d'arylation d'hétéroarènes voir: a) K. Hattori, K. Yamaguchi, J. Yamaguchi, K. Itami, Tetrahedron 2012, 68, 7605; b) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhang, J.-O. Yu, Chem. Sci. 2013, 4, 2374; c) F. Shibahara, E. Yamaguchi, T. Murai, Chem. Commun. 2010, 46, 2471; d) K. Ueda, S. Yanagisawa, J. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2010, 49, 8946; e) S. Potavathri, K. C. Pereira, S. I. Gorelsky, A. Pike, A. P. LeBris, B. DeBoef, J. Am. Chem. Soc. 2010, 132, 14676; f) D. Roy, S. Mom, M. Beaupérin, H. Doucet, J.-C. Hierso, Angew. Chem. Int. Ed. 2010, 49, 6650; g) H. Hachiya, K. Hirano, T. Satoh, M. Miura, Angew. Chem. 2010, 122, 2248; Angew. Chem. Int. Ed. 2010, 49, 2202; h) J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen, M. M. Faul, J. Am. Chem. Soc. 2010, 132, 3674; i) M. Kitahara, N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2011, 133, 2160; j) J. Kwak, M. Kim, S. Chang, J. Am. Chem. Soc. 2011, 133, 3780; k) R. Takita, D. Fujita, F. Ozawa, Synlett 2011, 959; l) H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, Org. Lett. 2012, 14, 1688; m) D. Roy, S. Mom, S. Royer, D. Lucas, J.-C. Hierso, H. Doucet, ACS Catal. 2012, 2, 1033; n) H. Y. Fu, L. Chen, H. Doucet, J. Org. Chem. 2012, 77, 4473. o) S. Grosse, C. Pillard, P. Bernard, G. Guillaumet, Synlett. 2013, 24, 2095. p) S. Grosse, C. Pillard, S. Massip, M. Marchivie, C. Jarry, P. Bernard, G. Guillaumet, J. Org. Chem. 2015, 80, 8539. q) L. Chen, C. Bruneau, P. H. Dixneuf, H. Doucet, Tetrahedron 2013, 69, 4381. r) M. He, J.-F. Soulé, H. Doucet, ChemCatChem. 2014, 6, 1824. s) K. Yuan, J.-F. Soulé, H. Doucet, ACS Catal. 2015, 5, 978. t) Takfaoui, L. Zhao, R. Touzani, J.-F. Soulé, P. H. Dixneuf, H. Doucet, Tetrahedron 2014, 70, 8316. u) F. Abdellaoui, C. Youssef, H. Ben Ammar, J.-F. Soulé, H. Doucet, Synthesis 2014, 46, 3341, v) K. Yuan, J. Boixel, A. Chantzis, D. Jacquemin, V. Guerchais, H. Doucet, Chemistry, 2014, 20, 10073. w) Smari, H. Ben Ammar, B. Ben Hassine, J.-F. Soulé, H. Doucet, Synthesis 2015, 47, 3354. x) J.-F. Soulé, H. Doucet, in C-H Bond Activation and Catalytic Functionalization I, Top. Organomet. Chem., ed. P. H. Dixneuf, H. Doucet, Springer, 2016, vol. 55, pp. 103–118.

## III.1 Optimisation de la réaction d'arylation ou d'(hétéro)arylation sur le 1-méthylindazole

Nous avons commencé notre étude en appliquant les conditions standards de la réaction d'arylation. Ainsi, le 1-méthylindazole **31** est soumis à l'action de 1.2 équivalents de 4-iodotoluène en présence de 0.1 équivalent d'acétate de palladium (Pd(OAc)<sub>2</sub>) et 1.5 équivalents de carbonate de potassium (K<sub>2</sub>CO<sub>3</sub>) dans le DMA à reflux (conditions A). Dans ces conditions aucune réaction n'a été observée (entrée 1, tableau 6), seule une petite quantité de biaryle (produit de la réaction de l'homocouplage) a été obtenue.

En examinant d'autres bromoaryles (2-bromotoluène et 3-bromotoluène) et bromopyridines (3-bromopyridine), aucune réaction d'arylation en position 3 n'a été encore une fois observée (schéma 90, éq 1 et 2). Etonnamment, dans un seul cas lors de l'utilisation de la 2-bromopyridine, nous avons isolé le produit arylé en C3 avec un très faible rendement. A noter que dans ce cas, un sous-produit, en l'occurrence la 2,2'-bipyridine résultant d'une réaction d'homocouplage, est également obtenue (schéma 90, éq 3).

Guidés par cette observation, nous avons suggéré que la réaction d'arylation en C3 pouvait être catalysée par la 2,2'-bipyridine qui joue alors le rôle de ligand. En conséquence, nous avons orienté nos efforts vers l'exploitation de cette réaction en présence de 2,2'-bipyridine, séquence encore inconnue dans la littérature et ce, dans le but de mettre au point l'arylation sélective de la position 3 en série 1*H*-indazole.

#### Schéma 90

Pour confirmer l'hypothèse émise préalablement, nous avons décidé d'explorer le rôle joué par divers ligands tels que la triphénylphosphine PPh<sub>3</sub> (**L1**), la 2,2'-bipyridine (**L2**) et la 1, 10-phénanthroline (**L3**) lors de l'arylation en position 3 du 1*H*-indazole (Figure 21).

Figure 21

La réaction d'arylation entre l'indazole **31** et le 4-iodotoluène a de nouveau été utilisée pour les études d'optimisation de la réaction d'arylation. Lors de l'ajout de **L1** (20 mol%) dans des conditions mettant en jeu 0.1 équivalent d'acétate de palladium (Pd(OAc)<sub>2</sub>) et 1.5 équivalent de carbonate de potassium (K<sub>2</sub>CO<sub>3</sub>) dans le DMA à reflux, le produit désiré **37** est isolé avec un rendement très faible (8%, entrée 2, tableau 6). l'utilisation de 20 mol % de Pd(OAc)<sub>2</sub> et 40 mol % de **L1**, permet d'améliorer légèrement le rendement du produit isolé, ce dernier restant très faible (17%, entrée 3, tableau 6). Lors de l'utilisation de 10 mol % de **L2** et 20 mol % de Pd(OAc)<sub>2</sub>, le produit souhaité est obtenu avec un rendement qui devient intéressant (51%, entrée 4, tableau 6). En augmentant les quantités respectives du ligand et du catalyseur à 20 mol % et à 40 mol %, aucune amélioration notable n'est observée. Dans ce cas, le composé **37** est isolé avec un rendement de 58% (entrée 5, tableau 6). L'utilisation de 10 mol % de **L3** et 5 mol % de Pd(OAc)<sub>2</sub>, conduit au produit attendu avec un faible rendement (23%, entrée 6, tableau 6). En augmentant la quantité de Pd(OAc)<sub>2</sub> et de **L3** à 10 mol % et 20 mol %, respectivement, le rendement en produit recherché **37** est nettement amélioré (53%, entrée 7, tableau 1).

Ensuite, nous avons testé d'autres bases. Ainsi, l'utilisation du carbonate de césium (Cs<sub>2</sub>CO<sub>3</sub>) à la place du K<sub>2</sub>CO<sub>3</sub> n'a pas permis d'accroître le rendement de la réaction, dans ce cas, le produit désiré est isolé avec un rendement de 45% (entrée 8, tableau 6). Le carbonate d'argent (Ag<sub>2</sub>CO<sub>3</sub>) a été également testé et a donné un rendement quasiment similaire à celui obtenu avec K<sub>2</sub>CO<sub>3</sub> (entrée 9, tableau 6). Nous avons alors décidé de tester différents solvants, tels que le 1,4-dioxane et le mélange de 1,4-dioxane / éthanol, mais malheureusement les réactions dans ces deux solvants s'avèrent impossibles en raison de la mauvaise solubilité du produit de départ au sein du milieu réactionnel (entrées 10 et 11, tableau 6). En revanche,

### Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

l'utilisation du xylène a permis d'isoler le produit souhaité, mais avec un rendement très faible (10%, entrée 12, tableau 6). Enfin, en conservant le DMA comme solvant et en augmentant les quantités respectives de ligand et de catalyseur à 40 mol % et à 20 mol %, le produit désiré est isolé avec une conversion totale et un rendement de 68% (entrée 13, tableau 6).

Tableau 6 : Optimisation des conditions de la réaction

| Entrée | Ligand (%)     | Pd (%) | Base                           | solvant | Rdt (%) <sup>a</sup> |
|--------|----------------|--------|--------------------------------|---------|----------------------|
| 1      | Sans           | 10     | K <sub>2</sub> CO <sub>3</sub> | DMA     | 0                    |
|        |                |        |                                |         |                      |
| 2      | L1 (20)        | 10     | $K_2CO_3$                      | DMA     | 8                    |
| 3      | <b>L1</b> (40) | 20     | $K_2CO_3$                      | DMA     | 17                   |
|        |                |        |                                |         |                      |
|        |                |        |                                |         |                      |
| 4      | <b>L2</b> (20) | 10     | $K_2CO_3$                      | DMA     | 51                   |
| 5      | <b>L2</b> (40) | 20     | $K_2CO_3$                      | DMA     | 58                   |

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

| 6  | <b>L3</b> (10) | 5  | $K_2CO_3$                       | DMA                     | 23 |
|----|----------------|----|---------------------------------|-------------------------|----|
| 7  | <b>L3</b> (20) | 10 | $K_2CO_3$                       | DMA                     | 53 |
| 8  | <b>L3</b> (20) | 10 | Cs <sub>2</sub> CO <sub>3</sub> | DMA                     | 45 |
| 9  | <b>L3</b> (20) | 10 | $Ag_2CO_3$                      | DMA                     | 50 |
| 10 | <b>L3</b> (20) | 10 | $K_2CO_3$                       | 1,4-Dioxane             | 0  |
| 11 | <b>L3</b> (20) | 10 | $K_2CO_3$                       | Diox./EtOH <sup>b</sup> | 0  |
| 12 | <b>L3</b> (20) | 10 | $K_2CO_3$                       | xylene                  | 10 |
| 13 | <b>L3</b> (40) | 20 | $K_2CO_3$                       | DMA                     | 68 |

a) Rendement en produit isolé après purification sur colonne de silice.

Nous avons ensuite décidé de comparer, d'une part, l'effet du ligand (**L2** ou **L3**) et, d'autre part, l'influence de la nature de l'halogène présent sur le composé arylique mis en jeu (l'iodo ou le bromo(hétéro)aryle). Pour ce faire, nous avons continué notre optimisation en utilisant le 1-méthylindazole **31** comme produit de départ, qui a été soumis à l'action de quatre agents arylants, à savoir le 4-bromo/iodotoluène et la 4-iodo/bromopyridine. Dans tous les cas les dérivés iodo(hétéro)aryliques ont donné de meilleurs résultats comparés à ceux obtenus avec leurs analogues bromo(hétéro)aryliques. De surcroît, le ligand **L3** est celui qui a présenté, comparé à **L2**, les meilleurs rendements (tableau 7).

Tableau 7 : Effet des iodures et des bromures d'aryle en présence soit de **L2** ou de **L3** en tant que ligands.

| entrée | X  | ligand produit | Rdt % |
|--------|----|----------------|-------|
| 1      | Br | L2             | 34    |

b) Diox./EtOH = 1,4-dioxane/EtOH (3/1, v/v)

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

| 2 | Br | L3 | N N N N N N N N N N N N N N N N N N N | 42 |
|---|----|----|---------------------------------------|----|
| 3 | Ι  | L3 | 36                                    | 58 |
| 4 | Ι  | L2 |                                       | 58 |
| 5 | Br | L3 | N N                                   | 51 |
| 6 | Ι  | L3 | 37                                    | 68 |

### III.2 Mécanisme de la réaction d'arylation sur le 1-méthylindazole

L'utilisation des complexes de palladium en synthèse organique s'est particulièrement développée au cours des dernières années. Ces catalyseurs, capables de s'adapter à un grand nombre de substrats et de conditions réactionnelles, sont compatibles avec la présence de toute une gamme de fonctionnalités (aldéhydes, cétones, alcools, groupements soufrés, halogénés,...). De plus, les complexes de palladium sont peu toxiques et facilement éliminables, ce qui permet leur emploi en milieu industriel.

Le mécanisme de la réaction d'arylation dépend de plusieurs facteurs intrinsèques (effets électroniques et acidité des protons) et extrinsèques (solvant, influence et force de la base). De nombreux mécanismes ont été proposés mais celui, décrit par Miura et coll. lors de l'arylation des azoles, s'avère le plus logique pour ce type de réaction. Ce mécanisme, représenté sur le schéma 4, est généralement accepté aujourd'hui pour la réaction d'arylation.

Pour générer de manière efficace la liaison C-C, le mécanisme proposé pour la réaction d'arylation catalysée par le palladium se déroule comme suit (Schéma 91):

Le cycle catalytique est initié par la formation *in situ* de l'espèce  $Pd(II)L_2$  (complexe 1), très réactive. Cet intermédiaire agit comme un électrophile sur la position 3 de l'indazole,

<sup>&</sup>lt;sup>178</sup> S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura, M. Nomura, *Bull. Chem. Soc. Jpn.* **1998**, 71, 467.

### Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

l'emploi d'une base, le carbonate de potassium dans notre cas, permettant de générer l'intermédiaire 1-méthylindazolyl palladium (II) (complexe 2). Cet intermédiaire peut facilement réagir avec des électrophiles de type Ar-Br ou Ar-I *via* une étape d'addition oxydante, pour former l'entité [Ar-(indazole)Pd-X] (complexe 3), le palladium (II) s'insérant dans la liaison Ar-X avec oxydation du métal au degré d'oxydation IV. Enfin une élimination réductrice génère le produit d'arylation 37 souhaité avec formation du complexe 4, ce dernier se transformant en complexe 1, ce qui permet la régénération de l'espèce catalytique Pd(II)L<sub>2</sub>.

Schéma 91

#### III.3 Généralisation

Afin d'étudier le domaine d'application et connaître les limites de la réaction d'arylation régiosélective des indazoles catalysée par le palladium, nous avons tenté de généraliser cette séquence à d'autres dérivés (hétéro)aryliques iodés dans les conditions précédemment optimisées.

La méthode mise au point est compatible avec une large variété de dérivés aryliques *para*-substitués. Que les réactifs mis en jeu soient porteurs d'un groupement électrodonneur ou électroattracteur, cette séquence conduit aux produits désirés **40-43** avec des rendements compris entre 57 et 70 % (entrées 3, 4, 5, 6, tableau 8). Par ailleurs, lors de l'utilisation du 2-iodotoluène et du 3-iodotoluène, les produits attendus **38** et **39** ont été isolés avec des rendements respectifs de 63 et 65 % (entrées 1 et 2, tableau 8). Ces rendements sont très

### Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

proches de celui obtenu au départ du 4-iodotoluène (entrée 13, tableau 6), ce qui traduit le fait que la substitution en ortho ou en méta n'altère en rien l'efficacité de la réaction.

L'utilisation de cette méthode pour l'introduction, en position 3, de groupements hétéroaryliques a ensuite été testée. La 4-iodopyridine **44**, pour sa part, conduit au produit souhaité avec un rendement de 61% (entrée 7, tableau 8).

Nous avons ensuite étudié l'importance de la substitution en position N1. Il est important de souligner que lorsque le groupement méthyle est remplacé par un motif phényle 33, 4-tolyle 34 ou 4-chlorophényle 35, la C-H arylation en position 3 est tout aussi efficace, nous avons obtenu les composés souhaités 45-48 avec de bons rendements compris entre 61 et 66 % (Tableau 8, essais 8 à 11). Les groupes sensibles tels que le chlore, le nitrile et l'ester sont stables dans nos conditions, ces entités pouvant être la base réactionnelle de transformations ultérieures (entrées, 3, 5, 6, 10, 11, tableau 8).

Schéma 92

Tableau 8 : Généralisation de la réaction d'arylation du 1-méthylindazole

| Entrée | Produit de départ | Produit | Rdt (%) <sup>a</sup> |
|--------|-------------------|---------|----------------------|
| 1      | 31                | 38      | 63                   |

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

| 2 | 31 | N 39               | 65 |
|---|----|--------------------|----|
| 3 | 31 | CI<br>N<br>N<br>40 | 70 |
| 4 | 31 | CF <sub>3</sub>    | 68 |
| 5 | 31 | CN<br>N<br>N<br>42 | 57 |
| 6 | 31 | CO <sub>2</sub> Et | 59 |

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

| 7  | 31 | N<br>N<br>44             | 61 |
|----|----|--------------------------|----|
| 8  | 33 | 45                       | 61 |
| 9  | 34 | CF <sub>3</sub>          | 65 |
| 10 | 35 | CI<br>N<br>N<br>CI<br>47 | 66 |

Chapitre III : Réaction d'(hétéro)arylation en position 3 des indazoles *via* des réactions catalysées par le palladium

| 11 | 35 | CF <sub>3</sub> | 65 |
|----|----|-----------------|----|
|    |    |                 |    |

a) Rendement en produit isolé après purification sur colonne de silice.

### **IV. Conclusion**

Au cours de ce chapitre, nous avons mis au point une stratégie de synthèse rapide et efficace basée sur l'utilisation de la réaction d'arylation directe catalysée par le palladium. Cette méthode a permis d'introduire régiosélectivement divers motifs aryliques et hétéroaryliques en position 3 des indazoles. A notre connaissance, ce travail constitue la première étude de la réaction d'arylation directe pallado-catalysée réalisée en série 1*H*-indazole. La mise au point des conditions réactionnelles a permis l'accès à une librairie d'indazoles substitués<sup>179</sup>.

Nous avons également mis en évidence que la C-H arylation en position 3 n'est pas influencée par la nature des groupements présents en position 1 sur le noyau indazole.

Dans le chapitre suivant, sera étudiée la réactivité de ce même noyau hétérocyclique possédant différents substituants sur le noyau benzénique, vis-à-vis, une nouvelle fois, de la C-H arylation directe.

<sup>&</sup>lt;sup>179</sup> A. Ben-Yahia, M. Naas, S. El Kazzouli, E.M. Essassi, G. Guillaumet, Eur. J. Org. Chem. 2012, 36, 7075.

| Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles |
|----------------------------------------------------------------------------|
|                                                                            |
|                                                                            |

### CHAPITRE IV

### Réaction d'arylation directe en positions 3 et 7 d'indazoles

Cette partie a fait l'objet d'une publication :

### Palladium-Catalyzed Direct C7-Arylation of Substituted Indazoles

M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, *J. Org. Chem.* **2014**, *79*, 7286.

### I. Introduction

Les résultats obtenus lors du chapitre précédent ont montré que le 1-méthylindazole **31** peut être fonctionnalisé régiosélectivement en position 3 à l'aide d'une réaction d'arylation directe pallado-catalysée. Par contre, lors de cette même étude aucune trace d'un quelconque produit arylé sur le noyau aromatique n'a été détectée.

Désireux d'accéder à une nouvelle série d'indazoles fonctionnalisés sur le motif aromatique, nous avons dédié ce chapitre au développement d'une nouvelle voie de synthèse de ces dérivés et ce, *via* toujours des réactions pallado-catalysées.

# II. Préparation des indazoles de départ : étape de la Nméthylation

Comme nous l'avons mentionné dans le chapitre précédent, la littérature rapporte un certain nombre de travaux concernant la méthylation et l'alkylation de l'indazole 170,171. Pour effectuer la réaction de méthylation, nous avons, dans un premier temps, appliqué des conditions couramment employées au laboratoire 180, à savoir 2.0 équivalents d'hydrure de sodium, 1 équivalent d'iodométhane au sein du DMF (préalablement mis sur tamis moléculaire) refroidi à 0°C puis remonté à température ambiante pour des durées de manipulation comprises entre 4 et 24 heures (tableau 9). Il est essentiel de noter que l'utilisation d'un seul équivalent d'iodomométhane nous a permis d'obtenir sélectivement l'isomère N1-méthylé.

Schéma 93

Tableau 9 : Préparation des indazoles de départ

| Entrée | Produits | G                 | Rdt (%) <sup>a</sup> |
|--------|----------|-------------------|----------------------|
| 1      | 49a      | 4-NO <sub>2</sub> | 79                   |
| 2      | 49b      | 5-NO <sub>2</sub> | 86                   |
| 3      | 49c      | 6-NO <sub>2</sub> | 83                   |

<sup>&</sup>lt;sup>180</sup> D. D. Mihaela, D. Robert, T. Ashok, X. Wenge, WO 2010021797 A1, 2010, *Chem. Abstr.* **2010**, 287156, 240836.

Chapitre IV: Réaction d'arylation directe en positions 3 et 7 d'indazoles

| 4  | 49d | 7-NO <sub>2</sub>    | 81 |
|----|-----|----------------------|----|
| 5  | 53a | 6-CN                 | 77 |
| 6  | 53b | 5-CF <sub>3</sub>    | 79 |
| 7  | 53c | 5-CO <sub>2</sub> Me | 77 |
| 8  | 53d | 5-F                  | 73 |
| 9  | 53e | 5-C1                 | 78 |
| 10 | 31  | Н                    | 92 |

a) Rendement en produit isolé après purification par chromatographie sur gel de silice.

### III. Arylation directe en C3 et C7

La C-H activation des hétéroarènes, réaction très utile dans le domaine de la chimie organique, représente aujourd'hui une approche particulièrement attrayante pour la préparation de nouveaux systèmes aryle(hétéro)aryliques biologiquement actifs. <sup>181</sup> Il est très important de souligner que l'arylation sur le cycle à six chaînons dans les systèmes 6,5-bicycliques, ne contenant aucun hétéroatome sur le cycle benzénique et possédant au moins un tel atome sur le cycle à cinq chaînons, est inconnue dans la littérature. En revanche, un exemple de C-H arylation du noyau benzénique de la quinolone, système 6,6-bicyclique, a été publié récemment. <sup>182</sup> La quasi-totalité des exemples des arylations directes décrites sur les systèmes hétérocycliques 6,5-bicycliques (à savoir : indole, <sup>183</sup> azaindole, <sup>184</sup> imidazo [1,2a] pyridine, <sup>106-107</sup> imidazo [1,2a] pyrimidine, <sup>185</sup> benzimidazole, <sup>186</sup> benzothiophène, <sup>187</sup> benzofurane, <sup>189</sup> et indazole <sup>181,188,189</sup>) ont généralement lieu sur le cycle à cinq chainons.

De surcroît, l'arylation des systèmes arèniques nécessite la présence de groupements directeurs « directing groups » (comme par exemple : amides, <sup>190</sup> acides carboxyliques, <sup>191</sup>

<sup>&</sup>lt;sup>181</sup>a) J. Roger, A. L. Gottumukkala, H. Doucet, *ChemCatChem.* 2010, 2, 20. b) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem., Int. Ed.* 2009, 48, 9792. c) F. Bellina, R. Rossi, *Tetrahedron.* 2009, 65, 10269. d) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* 2009, 38, 2447. e) J. C. Lewis, R. G. Bergman, J. A. Ellman, *Acc. Chem. Res.* 2008, 41, 1013. f) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* 2007, 36, 1173. g) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174. h) T. Satoh, M. Miura, *Chem. Lett.* 2007, 36, 200.

<sup>&</sup>lt;sup>182</sup> J. Kwak, M. Kim, S. Chang, *J. Am. Chem. Soc.* **2011**, *133*, 3780.

<sup>&</sup>lt;sup>183</sup> a) N. Lebrasseur, I. Larrosa, *In Advances in Heterocyclic Chemistry*; A. R. Ed. Katritzky, Elsevier: Amsterdam, **2012**; Vol. *105*, p 309. b) E. T. Nadres, A. Lazareva, O. Daugulis, *J. Org. Chem.* **2011**, *76*, 471. c) F. Bellina, R. Rossi, *J. Org. Chem.* **2008**, *73*, 5529.

<sup>&</sup>lt;sup>184</sup> M. P. Huestis, K. Fagnou, *Org. Lett.* **2009**, *11*, 1357.

<sup>&</sup>lt;sup>185</sup> a) D. S. Ermolatév, V. N. Gimenez, E. V. Babaev, E. Van der Eycken, *J. Comb. Chem.* **2006**, *8*, 659. (b) W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai, R. D. Larsen, *Org. Lett.* **2003**, *5*, 4835.

<sup>&</sup>lt;sup>186</sup> a) F. Bellina, S. Cauteruccio, R. Rossi, *Eur. J. Org. Chem.* **2006**, 1379. b) F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, *Tetrahedron.* **2007**, *63*, 1970.

<sup>&</sup>lt;sup>187</sup> A. F. P. Biajoli, E. T. da Penha, C. R. D. Correia, *RSC Adv.* **2012**, 2, 11930.

<sup>&</sup>lt;sup>188</sup> a) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhanga, J.-Q. Yu, *Chem. Sci.* **2013**, *4*, 2374. b) K. Hattori, K. Yamaguchi, J. Yamaguchi, K. Itami, *Tetrahedron*. **2012**, *68*, 7605.

<sup>&</sup>lt;sup>189</sup> S. A. Ohnmacht, A. J. Culshaw, M. F. Greaney, *Org. Lett.* **2010**, *12*, 224.

<sup>&</sup>lt;sup>190</sup> a) Y. Aihara, N. Chatani, *Chem. Sci.* **2013**, *4*, 664. b) D.-D. Li, T.-T. Yuan, G.-W. Wang, *J. Org. Chem.* **2012**, 77, 3341. c) D. Shabashov, O. Daugulis, *Org. Lett.* **2006**, *8*, 2947.

phosphoramidates, <sup>192</sup> cyano, <sup>193</sup> aldéhydes, <sup>194</sup> nitro, <sup>195</sup> voire d'autres motifs. <sup>196</sup>) A noter que la plupart des groupes directeurs orientent la réaction d'arylation vers la position ortho ou méta. <sup>197, 198</sup>

Récemment, conjointement avec d'autres groupes, <sup>188</sup> nous avons mis au point une arylation en C3 du 1*H*-indazole *N*-substitué en utilisant l'acétate de palladium Pd(OAc)<sub>2</sub> comme catalyseur et la 1,10-phénanthroline comme ligand. <sup>179</sup> Nous avons, ainsi que d'autres, également montré que les nitroindazoles, qui sont des produits commercialement disponibles, peuvent être transformés en quelques étapes en molécules bioactives très intéressantes. <sup>156,199</sup> Poursuivant notre effort pour le développement de l'arylation directe, nous souhaitons présenter ici les résultats de l'arylation régiosélective en C7 des indazoles. A notre connaissance, cette séquence constitue le premier exemple d'arylation directe sur le cycle à six chaînons de systèmes 6,5-bicycliques contenant un ou plusieurs hétéroatomes sur le cycle à cinq chaînons.

### III.1 Mise au point des conditions de la CH-arylation directe

Guidé par les conditions que nous avons développées lors de l'arylation en position 3 des 1*H*-indazoles, <sup>179</sup> nous avons commencé notre étude en soumettant les produits de départ que sont les 4-nitro, 5-nitro, 6-nitro et 7-nitroindazoles (**49a-d**)<sup>169</sup> à l'action de l'iodobenzène (tableau 10). Après optimisation, nous avons trouvé que l'emploi de phosphate tripotassique K<sub>3</sub>PO<sub>4</sub> comme additif combiné aux conditions réactionnelles précédemment mises au point améliore les rendements et diminue les temps de réactions. Ainsi, en utilisant 1 équivalent d'iodobenzène en présence de 0,2 équivalent de Pd(OAc)<sub>2</sub>, 0,4 équivalent de 1,10-phénanthroline, 3 équivalents de K<sub>2</sub>CO<sub>3</sub>, et 2 équivalents de K<sub>3</sub>PO<sub>4</sub> à reflux dans le DMA, tant sur le 5-nitro- que sur le 6-nitroindazole (**49a, b**), nous avons obtenu des mélanges de

<sup>&</sup>lt;sup>191</sup> a) J. Cornella, M. Righi, I. Larrosa, *Angew. Chem., Int. Ed.* **2011**, *50*, 9429. b) H. A. Chiong, Q. N. Pham, O. Daugulis, *J. Am. Chem. Soc.* **2007**, *129*, 9879. c) R. Giry, N. Maugel, J. J. Li, D. H. Wang, S. P. Breazzano, L. B. Saunders, J. Q. Yu, *J. Am. Chem. Soc.* **2007**, *129*, 3510.

<sup>&</sup>lt;sup>192</sup> B. C. Chary, S. Kim, Y. Park, J. Kim, P. H. Lee, *Org. Lett.* **2013**, *15*, 2692.

<sup>&</sup>lt;sup>193</sup> W. Li, Z. Xu, P. Sun, X. Jiang, M. Fang, Org. Lett. **2011**, 13, 1286.

<sup>&</sup>lt;sup>194</sup> N. Gürbüz, I. Özdemira, B. Cetinkaya, *Tetrahedron Lett.* **2005**, 46, 2273.

<sup>&</sup>lt;sup>195</sup> a) L. Caron, L.-C. Campeau, K. Fagnou, *Org. Lett.* **2008**, *10*, 4533. b) C. Wang, Y.-B. Yu, S. Fan, X. Zhang, *Org. Lett.* **2013**, *15*, 5004.

<sup>&</sup>lt;sup>196</sup> G. Rouquet, N. Chatani, Angew. Chem., Int. Ed. **2013**, 52, 11726.

<sup>&</sup>lt;sup>197</sup> R. J. Phipps, M. Gaunt, J. Science. **2009**, 323, 1593.

<sup>&</sup>lt;sup>198</sup> a) M. Wasa, B. T. Worrell, J.-Q. Yu, *Angew. Chem., Int. Ed.* **2010**, 49, 1275. b) P. Guo, J. M. Joo, S. Rakshit, D. Sames, *J. Am. Chem. Soc.* **2011**, *133*, 16338. c) V. O. Iaroshenko, A. Gevorgyan, O. Davydova, A. Villinger, P. Langer, *J. Org. Chem.* **2014**, 79, 2906.

<sup>&</sup>lt;sup>199</sup> N. Abbassi, H. Chicha, E. M. Rakib, A. Hannioui, M. Alaoui, A. Hajjaji, D. Geffken, C. Aiello, R. Gangemi, C. Rosano, M. Viale, *Eur. J. Med. Chem.* **2012**, *57*, 240.

produits monoarylés en C3 (**50a, b**) et doublement arylés en C3 / C7 (**51a, b**). Dans les deux cas, lorsque la quantité d'iodobenzène est accrue (2 ou 6 équiv), les pourcentages des produits arylés en C3 diminuent alors que les pourcentages des produits diarylés en C3 / C7 augmentent (entrées 1 et 2, tableau 10). A signaler que quelle que soit la quantité de réactifs utilisés, nous n'avons jamais atteint une arylation totale en C-7. Fait intéressant, la réaction conduite au départ de 4-nitroindazole a donné exclusivement le produit **52c** arylé en C7, aucune trace du produit arylé en C3 n'étant observée. Cette sélectivité est probablement dûe à l'encombrement stérique du groupe nitro en position 4 du composé **52c**. A signaler qu'une conversion totale est constatée lorsque 5 équivalents d'iodobenzène ont été mis en œuvre (entrée 3, tableau 10). Comme logiquement attendu, seul le produit arylé en C3 **50d** a été isolé dans le cas du 7-nitroindazole **49d** et ce, avec un rendement de 71% (entrée 4, tableau 10).

$$O_{2}N \xrightarrow{||} N \qquad Pd(OAc)_{2}, \\ 1, 10-Phenanthroline \\ K_{2}CO_{3}, K_{3}PO_{4} \\ DMA, reflux \qquad O_{2}N \xrightarrow{||} N + O_{2}N \xrightarrow{||} N \qquad ou \qquad N$$

Schéma 94

Tableau 10 : Arylation en C3 et arylation en C3 / C7 des 1-méthyl-nitro-1*H* indazoles.

| Entrée | Produit de départ  | I-Ph (équiv.) | Temps de réaction | Rdts (%) <sup>a</sup> |
|--------|--------------------|---------------|-------------------|-----------------------|
|        |                    |               |                   | 49/50/51/52           |
| 1      | O <sub>2</sub> N N | 1             | 18                | traces/61/21/0        |
|        | N                  | 2             | 18                | 0/41/38/0             |
|        | 49a                | 6             | 18                | 0/36/45/0             |
| 2      | N                  | 1             | 18                | traces/53/19/0        |
|        | $O_2N$             | 2             | 18                | 0/45/32/0             |
|        | 49b                |               |                   |                       |

Chapitre IV: Réaction d'arylation directe en positions 3 et 7 d'indazoles

| 3 | NO <sub>2</sub> | 1 | 24 | 45/0/0/12     |
|---|-----------------|---|----|---------------|
|   | N               | 1 | 48 | 32/0/0/17     |
|   | \               | 3 | 24 | 9/0/0/43      |
|   | 49c             | 5 | 24 | 0/0/0/45      |
| 4 | N               | 1 | 18 | traces/69/0/0 |
|   | NO <sub>2</sub> | 2 | 18 | 0/71/0/0      |
|   | 49d             |   |    |               |

a) Rendement en produit isolé après purification sur colonne de silice.

Suite à ces premiers résultats forts encourageants, nous avons décidé d'appliquer les conditions de réaction mises au point sur l'indazole lui-même ainsi que sur les synthons 53ae, diversement substitués en position 5 ou 6 169 (tableau 11). Des résultats similaires à ceux obtenus avec le 5-nitro- et le 6-nitroindazole ont alors été observés. De fait, des mélanges de produits arylés en C3 54a-c et doublement arylés en C3 / C7 55a-c ont été détectés. Dans le cas du 5-fluoro-1-méthyl-1*H*-indazole (**53d**) comme produit de départ, lorsque 2 équivalents d'iodobenzène sont utilisés, le produit arylé en C3 54d est isolé avec un rendement de 62%, une faible quantité du produit diarylé en C3 / C7 55d étant mise en évidence (9%, entrée 4, tableau 11). Un résultat similaire a été constaté lors de l'utilisation de 53e comme produit de départ, dans ce cas, seul le produit arylé en C3 54e est isolé avec un rendement de 59% (entrée 5, tableau 11). Comme prévu, la réaction entre l'indazole non substitué 31 et l'iodobenzène (2 équiv) conduit exclusivement au produit monoarylé en C3 54f avec un rendement de 65% (entrée 6, tableau 11). A noter que, dans le cas des produits de départ 53ad, le même phénomène est observé lorsqu'on augmente la quantité d'iodobenzène (2 équiv): Les rendements accroissent en faveur du composé de disubstitution 55a-d, sans toutefois atteindre une disubstitution totale (entrées 1-4, tableau 11).

### Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles

### Schéma 95

Tableau 11 : Arylation en C3 et arylation en C3 / C7 des 1-méthyl-1H indazoles diversement substitués.

| Entrée | Produit de départ | Ph-I (équiv.) | Rdts (%) <sup>a</sup> <b>54/55</b> |
|--------|-------------------|---------------|------------------------------------|
| 1      | N                 | 1             | 55/20                              |
|        | NC N              | 2             | 42/34                              |
|        | 53a               |               |                                    |
| 2      | F <sub>3</sub> C  | 1             | 49/20                              |
|        | N                 | 2             | 45/30                              |
|        | 53b               |               |                                    |
| 3      | OMe               | 1             | 43/17                              |
|        | OCC               | 2             | 39/26                              |
|        | 53c               |               |                                    |
| 4      | F                 | 1             | 69/5                               |
|        | N                 | 2             | 62/9                               |
|        | 53d               |               |                                    |
|        |                   |               |                                    |

Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles

a) Rendement en produit isolé après purification sur colonne de silice.

Afin d'optimiser la réaction d'arylation sur le sommet C-7, nous avons décidé d'utiliser comme substrat de départ le 1-méthyl-5-nitroindazole **49a**, possédant un groupe phényle en position 3, et le 4-iodotoluène ou le 4-bromotoluène comme agents arylants (tableau 12). Pour mener à bien ce travail, plusieurs conditions expérimentales ont été testées, en faisant varier la base (organique et inorganique), le catalyseur, le ligand, la quantité de ces deux entités, ainsi que le temps de la réaction.

Le phosphate tripotassique K<sub>3</sub>PO<sub>4</sub> a un impact significatif sur la durée de la réaction (entrées 1 et 2, tableau 12). Ainsi, lorsque ce dernier est ajouté au mélange réactionnel, le temps de la réaction est nettement diminué (24 h au lieu de 48 h). Nous avons également observé que le rendement de la réaction se trouve sensiblement amélioré (64% au lieu de 61%). Le carbonate de potassium K<sub>2</sub>CO<sub>3</sub> s'est avéré, pour sa part, une meilleure base par rapport à Ag<sub>2</sub>CO<sub>3</sub>, Cs<sub>2</sub>CO<sub>3</sub>, ou Et<sub>3</sub>N, (entrées 2, 4, 5, et 17, tableau 12). Le dichlorure de palladium PdCl<sub>2</sub> est également efficace pour obtenir le produit désiré **56** avec un rendement similaire en comparaison à celui obtenu lors de l'utilisation du Pd(OAc)<sub>2</sub> (entrées 6 et 7, tableau 12).

Une rapide étude a montré que la 1,10-phénanthroline se révèle être le ligand le plus efficace par rapport à tous ceux examinés dans cette étude (entrées 8-14, tableau 12). Nous avons ensuite décidé d'étudier l'effet de la nature de l'halogène en comparant l'iodobenzène et le bromobenzène. Si nous avons observé une conversion totale avec le bromobenzène en 48h, le rendement en produit attendu s'avère diminué par rapport à celui enregistré avec l'analogue iodé (entrées 18 et 19, tableau 12).

Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles

Schéma 96

Tableau 12 : Optimisation des conditions de la réaction d'arylation en C7 de 50a.

| Entrée | X  | mol % de<br>Pd | mol % L                                 | Base                            | Temps (h) | Rdt (%) <sup>a</sup>     |
|--------|----|----------------|-----------------------------------------|---------------------------------|-----------|--------------------------|
| 1      | I  | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 48        | 61 <sup>b</sup>          |
| 2      | I  | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 24        | 64                       |
| 3      | I  | 20             | Phen. (40)                              | none                            | 48        | 48 (17) <sup>c</sup>     |
| 4      | I  | 20             | Phen. (40)                              | $Ag_2CO_3$                      | 48        | 57                       |
| 5      | I  | 20             | Phen. (40)                              | Cs <sub>2</sub> CO <sub>3</sub> | 24        | 58                       |
| 6      | I  | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 24        | 62 <sup>d</sup>          |
| 7      | I  | 20             | Phen. (40)                              | Ag <sub>2</sub> CO <sub>3</sub> | 24        | 59 <sup>d</sup>          |
| 8      | I  | 20             | Ph <sub>3</sub> P (40)                  | K <sub>2</sub> CO <sub>3</sub>  | 24        | 0 (38) <sup>c</sup>      |
| 9      | I  | 20             | Xantphos (40)                           | K <sub>2</sub> CO <sub>3</sub>  | 24        | 0 (24) <sup>c</sup>      |
| 10     | I  | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 24        | 49 <sup>e</sup>          |
| 11     | I  | 20             | none                                    | $K_2CO_3$                       | 24        | 41 <sup>f</sup>          |
| 12     | I  | 20             | Davephos (40)                           | $K_2CO_3$                       | 24        | traces (34) <sup>c</sup> |
| 13     | I  | 20             | X-Phos (40)                             | K <sub>2</sub> CO <sub>3</sub>  | 24        | traces (26) <sup>c</sup> |
| 14     | I  | 20             | PCy <sub>3</sub> .HBF <sub>4</sub> (40) | K <sub>2</sub> CO <sub>3</sub>  | 24        | 15 (23) <sup>c</sup>     |
| 15     | I  | 10             | Phen. (20)                              | K <sub>2</sub> CO <sub>3</sub>  | 36        | 62                       |
| 16     | I  | 5              | Phen. (10)                              | K <sub>2</sub> CO <sub>3</sub>  | 24        | 16 (47) <sup>c</sup>     |
| 17     | I  | 20             | Phen. (40)                              | Et <sub>3</sub> N               | 24        | 12 (69) <sup>c</sup>     |
| 18     | Br | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 24        | 42 (13) <sup>c</sup>     |
| 19     | Br | 20             | Phen. (40)                              | K <sub>2</sub> CO <sub>3</sub>  | 48        | 47                       |

[a] Rendement en produit isolé après purification sur colonne de silice [b] K<sub>3</sub>PO<sub>4</sub> présent dans tous les essais sauf (a) [c] quantité récupérée de matière première **50a** [d] PdCl<sub>2</sub> utilisé à la place de Pd(OAc)<sub>2</sub> [e] addition au milieu réactionnel de 0,3 équiv. de PivOH comme additif [f] réaction conduite sans ligand mais en présence de 0,4 équiv. de PivOH en tant qu'additif.

### III.2 Généralisation

Afin de connaître les potentialités et les limites de la réaction d'arylation en C7, nous avons décidé de préparer une série d'indazoles substitués sur la position 7 en faisant appel aux conditions optimisées.

Pour ce faire, divers 3-phényl-1-méthylindazoles substitués par des groupements NO<sub>2</sub>, CN, CF<sub>3</sub>, CO<sub>2</sub>Me, F, Cl, et H (**50b**, **c** et **54a-f**) ont été préparés à partir des 1-méthylindazoles **31, 49b-c** et **53a-e** en utilisant les conditions de bromation et de couplage décrites dans le chapitre 2,<sup>170,152</sup> à savoir 1,5 équivalents de *N*-bromosuccinimide (NBS) à reflux de l'acétonitrile, puis traitement des indazoles bromés avec de l'acide phénylboronique pendant 2 heures sous irradiation micro-ondes, en présence de tétrakis (triphénylphosphine)palladium, et de carbonate de césium dans un mélange dioxane/EtOH/H<sub>2</sub>O (3/1/0.5) (schéma 97).

Schéma 97

Les résultats obtenus sont regroupés dans le tableau 13 ci-après.

Tableau 13 : Préparation des produits de départ.

| Entrée | Produit de départ | Rdt (%) <sup>a</sup> de la bromation | Rdt (%) <sup>a</sup> du couplage de Suzuki |
|--------|-------------------|--------------------------------------|--------------------------------------------|
| 1      | 49b               | 91                                   | 73                                         |
| 2      | 49c               | 87                                   | 71                                         |
| 3      | 53a               | 73                                   | 70                                         |
| 4      | 53b               | 78                                   | 68                                         |
| 5      | 53c               | 71                                   | 75                                         |

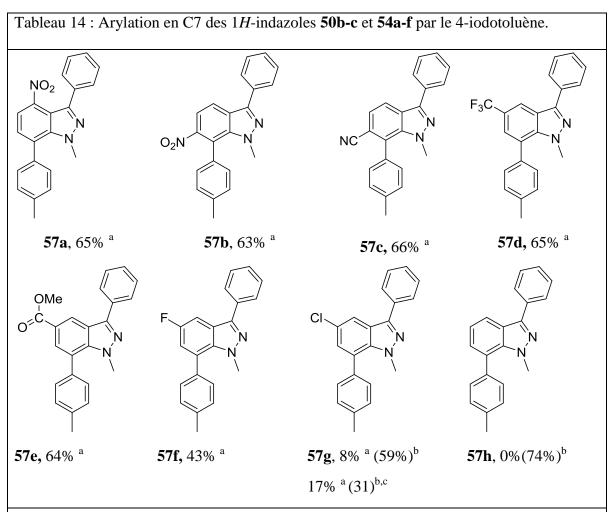
Chapitre IV: Réaction d'arylation directe en positions 3 et 7 d'indazoles

| 6 | 53d | 73 | 69 |
|---|-----|----|----|
| 7 | 53e | 77 | 67 |
| 8 | 31  | 90 | 81 |

a) Rendement en produit isolé après purification sur colonne de silice.

Les entités générées 50b-c et 54a-f sont ensuite utilisées comme substrats de départ avec le 4-iodotoluène comme partenaire de couplage (tableau 14). Dans le cas des indazoles substitués par des groupements électro-attracteurs, les composés 57a-e souhaités sont isolés avec des rendements acceptables compris entre 63 et 66% (tableau 14). En revanche, lorsque le 5-fluoro-3-phényl-1-méthylindazole est choisi comme produit de départ, la quantité en produit 57f arylé sur la position 7 a relativement chuté (43%, tableau 14). A noter que le rendement de l'arylation en C7 diminue lorsque le 5-chloro-1-méthyl-3-phényl-1*H*-indazole 54e est employé comme matière de départ. Dans ce cas, de faibles conversions sont obtenus lors de l'utilisation de 2 voire de 5 équivalents de 4-iodotoluène, le produit de couplage 57g étant obtenu avec des rendements respectivement de 8 et 17% avec récupération de grandes quantités du produit de départ 54e (tableau 14). Comme prévu, la réaction entre le 3-phényl-1méthylindazole 54f et le 4-iodotoluène n'a donné aucune trace du produit désiré 57h, seul le produit de départ **54f** étant récupéré avec un rendement de 74% (tableau 14). Cette première étude de généralisation a montré que la présence de groupes puissamment électro-attracteurs sur les positions 4, 5 et 6 est cruciale pour l'obtention des produits d'arylation en C7 avec de bons rendements.

$$G \stackrel{||}{ ||} N \qquad Pd(OAc)_2,$$


$$1, 10-Ph\acute{e}nanthroline$$

$$K_2CO_3, K_3PO_4$$

$$DMA, reflux$$

$$57a-h$$

Schéma 98



[a] Rendement en produit isolé après purification sur colonne de silice.

[b] quantité de produit de départ récupéré [c] utilisation de 5 équivalents de 4-iodotoluène.

Dans le but de confirmer que la C-H arylation directe a lieu, comme supposé, en position 7 du noyau benzénique de l'indazole, nous avons effectué une expérience RMN NOESY sur les composés **57a** et **57b**. La présence d'une tache de corrélation entre les protons aromatiques du groupement tolyle et les protons du groupement méthyle porté par l'azote en position 1 valide notre hypothèse initiale (Figure 22,23).

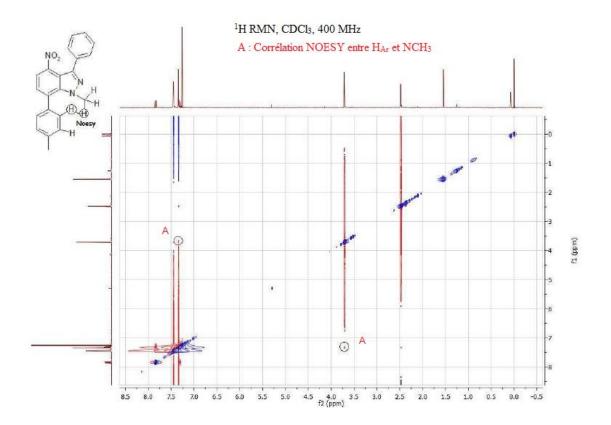



Figure 22

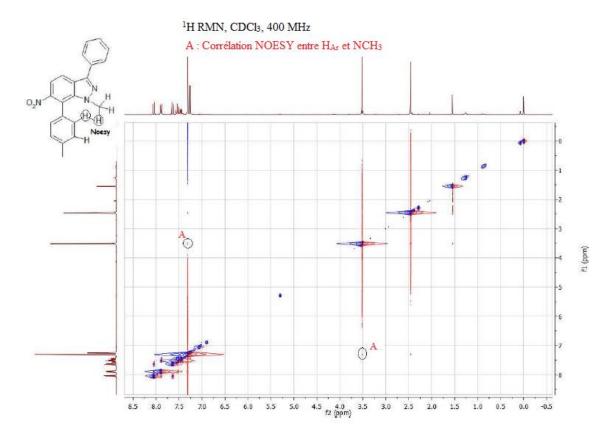
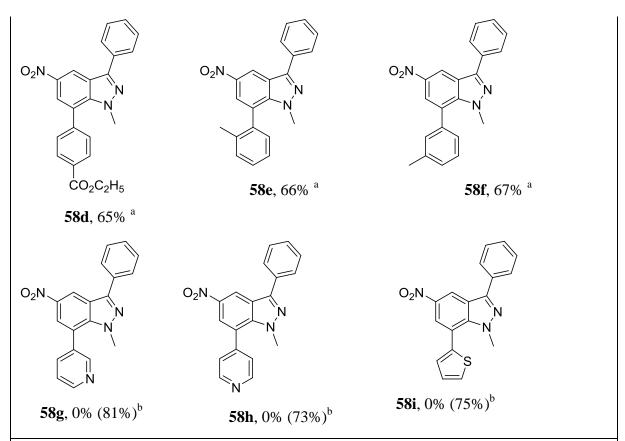



Figure 23

Nous avons alors décidé d'introduire divers motifs aryliques et hétéroaryliques en position 7 du 5-nitro-1-méthylindazole **49a**. Pour ce faire, nous avons utilisé différents dérivés iodo(hétéro)aryliques en tant que partenaires de couplage.


A l'examen du tableau 15, nous pouvons souligner que la C-H arylation en position 7 est possible quelle que soit la nature des groupements aryliques méta- ou ortho- substitués mis en jeu, ce résultat montrant que la réaction est quasiment insensible à l'encombrement stérique.

Par ailleurs, une large diversité d'iodoaryles a pu être introduite, à savoir des motifs aryliques portant des groupements électro-attracteurs (CF<sub>3</sub>, CO<sub>2</sub>Et) ou électro-donneurs (OCH<sub>3</sub>, CH<sub>3</sub>), voire des groupements neutres (phényle). Ces derniers ont pu être greffés sur le noyau indazolique avec des rendements oscillant entre 65 et 69%.

Étonnamment, aucune réaction entre **50a** et des entités iodohétéroaryliques (la 4-iodopyridine, la 3-iodopyridine et le 2-iodothiophène) n'a été observée pour des raisons que nous ne pouvons expliquer pour l'instant. Dans tous les cas, seul est récupéré le substrat de départ **50a** (tableau 15).

Schéma 99

Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles



- [a] Rendement en produit isolé après purification sur colonne de silice.
- [b] () quantité de produit de départ récupéré 50a.

De la même façon, afin de vérifier que l'arylation a bien lieu en position 7, nous avons effectué une expérience RMN NOESY sur le composé **58b**. Comme nous l'avons mentionné précédemment, la présence d'une tache de corrélation entre les protons aromatiques du groupement tolyle et les protons du groupement méthyle porté par l'azote en position 1 valide notre hypothèse (Figure 24).

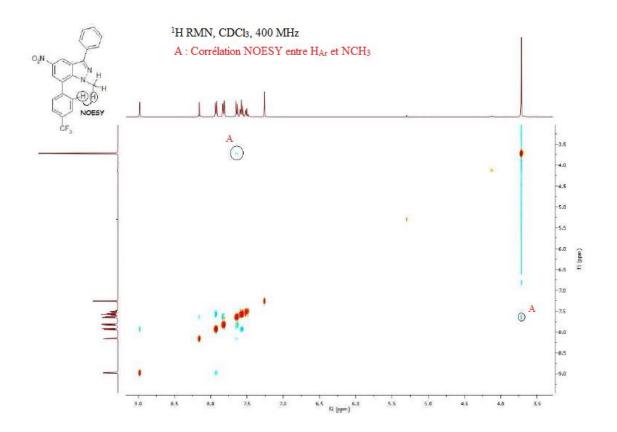



Figure 24

#### III.3 Mécanisme de la réaction d'arylation en position 7

Pour étayer l'étude mécanistique, nous avons décidé de vérifier si la réaction est influencée par la nature du substituant en N1.

Pour ce faire, nous avons utilisé le 5-nitro-1,3-diphényl-1*H*-indazole **59** comme produit de départ en lieu et place du produit **50a**. Au départ du 5-nitroindazole, le composé **59** traité dans les conditions de C-arylations précédemment décrites au chapitre 3,<sup>172</sup> conduit au dérivé **60** avec un rendement de 70% (schéma 100).

Schéma 100

Lorsque **60** est soumis à l'action du 4-iodotoluène, aucune arylation en C7 n'est observée, seul le produit de départ **60** étant récupéré avec un rendement de 81% (schéma 101).

#### Schéma 101

Sur la base de ce résultat, nous supposons que la paire d'électrons libre de l'azote (*N1*-méthyle) joue le rôle d'un groupe directeur pour l'arylation régiosélective en position 7, *via* la coordination avec le palladium, pour stabiliser la liaison Pd-C. Lorsque la paire d'électrons de l'azote *N1* est conjugué avec un groupe phényle, aucune coordination n'est possible, avec pour résultat l'absence d'arylation en C7, ce qui pourrait être attribué à la formation d'un N2, C2'(noyau phényle)-palladacycle qui inhibe l'activité catalytique du Pd. Nous avons montré également que la présence d'un groupement éléctro-attracteur en positions 4, 5, ou 6 améliore considérablement la réactivité de la position 7 du noyau benzénique.

Un mécanisme plausible est proposé dans le schéma 102. Le *N*1-indazole (produit de départ) se chélate avec le catalyseur généré in situ à partir de Pd(OAc)<sub>2</sub> et de la 1,10-phénanthroline (complexe 1). L'intermédiaire généré (complexe 2) conduit au complexe 3 par C-H activation de la position 7 de l'indazole. Ce dernier réagit avec l'éléctrophile Ph-I, pour former le complexe 4 *via* une étape d'addition oxydante. Enfin, une élimination réductrice fournit le produit désiré accompagné du complexe 5, qui se transforme en complexe 1, permettant la régénération de l'espèce catalytique.

Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles

#### Schéma 102

#### III.4 Etude de l'incorporation de deutérium dans le composé 49a

Afin de comprendre quel mode d'activation est mis en jeu lors de l'arylation en position 3 et 7, et d'appuyer la voie mécanistique proposée, nous avons décidé d'étudier l'acidité des hydrogènes de l'indazole en ces deux position et ce, *via* l'incorporation de deutérium sur le composé **49a** par traitement de ce dérivé avec de l'hydroxyde de potassium dans un mélange dioxane/D<sub>2</sub>O.<sup>74</sup>

$$O_2N$$
 $N$ 
 $N$ 
 $N$ 
 $N$ 
 $N$ 
 $N$ 
 $N$ 
 $N$ 

Schéma 103

Malheureusement cet essai n'a pas permis l'obtention du produit souhaité car la totalité de la matière première a été recouvrée (entrée 1, tableau 16).

Quelques autres tests d'incorporation du deutérium (Tableau 16, entrées 2-5) ont été menés sur le composé **49a** mais les essais se sont révélés infructueux, ce qui ne nous permet

pas de définir quel mode d'activation est mis en jeu. Ces travaux nécessitent donc d'être approfondis.

Tableau 16 : Essais d'incorporation de deutérium sur le composé 49a.

| Entrée | Conditions                                                                       | Rdt (%) |
|--------|----------------------------------------------------------------------------------|---------|
| 1      | KOH (1éq.), 1,4-Dioxane/D <sub>2</sub> O, 55°C, 2-3h                             | MP (94) |
| 2      | KOH (1éq.), 1,4-Dioxane/D <sub>2</sub> O, reflux, 24h                            | MP (86) |
| 3      | K <sub>2</sub> CO <sub>3</sub> (1éq.), 1,4-Dioxane/D <sub>2</sub> O, reflux, 24h | MP (82) |
| 4      | K <sub>2</sub> CO <sub>3</sub> (1éq.), DMA/D <sub>2</sub> O, reflux, 24h         | MP (75) |
| 5      | $K_2CO_3$ (1éq.), $K_3PO_4$ (1éq.), $DMA/D_2O$ , reflux, 24h                     | MP (71) |
|        |                                                                                  |         |

MP = Matière première

### III.5 Procédé « one pot » concernant la double arylation des indazoles N1-substitués

Suite aux résultats encourageants obtenus dans la partie précédente, nous avons imaginé, pour la synthèse des indazoles doublement arylés en positions 3 et 7, mettre en place un procédé « one-pot » faisant appel à un couplage de Suzuki et à une réaction d'arylation directe, avec les deux séquences une catalysée par le palladium. Pour cette raison, nous avons tout d'abord développé de nouvelles conditions concernant la réaction de couplage de Suzuki-Miyaura semblables à celles trouvées pour la réaction d'arylation en C7. En conséquence, nous avons constaté que l'ajout de Ph<sub>3</sub>P comme ligand, aux réactifs usités lors de la réaction préalablement mis au point pour l'arylation en C7 [(Pd(OAc)<sub>2</sub> comme catalyseur, K<sub>2</sub>CO<sub>3</sub> comme base, et K<sub>3</sub>PO<sub>4</sub> comme additif à reflux dans le DMA pendant 24 h], est cruciale pour avoir une conversion totale. Après optimisation des conditions de la réaction de couplage de Suzuki-Miyaura, nous avons décidé de développer la séquence Suzuki / arylation en « one pot ». Pour atteindre cet objectif, nous avons fait réagir les 3-bromoindazoles 62a-f, avec l'acide phénylboronique, dans les conditions de Suzuki-Miyaura pendant 24 h (première réaction de couplage croisé), la 1,10-phénanthroline et l'iodotoluène sont ensuite ajoutés, et le mélange réactionnel est de nouveau chauffé pendant 24 h (seconde réaction de couplage croisé). Cette séquence conduit en « one-pot », aux produits diarylés en C3 /C7 56 et 57a-e avec des rendements variant entre 50 et 58% (tableau 17).

Chapitre IV: Réaction d'arylation directe en positions 3 et 7 d'indazoles

Schéma 104

Tableau 17: One-pot Suzuki/arylation en C7.

| Entrée | Produit de départ | produit | Rdt (%) <sup>a</sup> one-pot |
|--------|-------------------|---------|------------------------------|
| 1      | 62a               | 57a     | 55                           |
| 2      | 62b               | 56      | 58                           |
| 3      | 62c               | 57b     | 53                           |
| 4      | 62d               | 57c     | 56                           |
| 5      | 62e               | 57d     | 50                           |
| 6      | 62f               | 57e     | 51                           |

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé par chromatographie sur gel de silice

#### **IV. Conclusion**

En conclusion, nous avons développé le premier exemple d'arylation directe régiosélective en C7 des 1*H*-indazoles possédant concomitamment un substituant en position 3 et un groupe éléctro-attracteur sur le noyau benzénique. Les conditions optimales de la réaction ont permis la préparation de divers indazoles arylés en C7. A noter que l'arylation directe du 1-méthyl-4-nitroindazole génère exclusivement le produit arylé en position 7. Nous avons ensuite étendu notre étude à la synthèse des produits diarylés en C3 et C7 en utilisant une nouvelle séquence "one-pot" pour les deux étapes de Suzuki-Miyaura et de CH-arylation. Nous pensons que le *N1* du 1-méthylindazole, grâce à la paire d'électrons libres présent sur l'azote, agit en tant que groupe directeur et que l'existence de groupements attracteurs d'électrons sur les positions 4, 5 et 6 permet d'améliorer les rendements des réactions d'arylations en C7. Cependant, afin de confirmer cette voie mécanistique, des études

<sup>&</sup>lt;sup>200</sup> M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, J. Org. Chem. 2014, 79, 7286.

#### Chapitre IV : Réaction d'arylation directe en positions 3 et 7 d'indazoles

complémentaires sont nécessaires. Enfin nous pensons que cette réactivité intéressante des 1*H*-indazoles substitués peut ouvrir de nouvelles voies pour le développement de réactions d'arylation directe au départ de plusieurs autres systèmes hétérocycliques.

| Chapitre V:   | Alcénylations    | directes en po  | sitions 3 et 7     | d'indazoles   | N-méthylés en po | sition 1 ou | 2 via |
|---------------|------------------|-----------------|--------------------|---------------|------------------|-------------|-------|
| des réactions | s catalysées par | r le palladium. | <b>Application</b> | à la synthèse | du « Gamendazo   | ole »       |       |

#### CHAPITRE V

Alcènylations directes en positions 3 et 7 d'indazoles N-méthylés en position 1 ou 2 via des réactions catalysées par le palladium.

Application à la synthèse du « Gamendazole »

Cette partie a fait l'objet d'une publication :

<u>Palladium-Catalyzed Oxidative Direct C3- and C7-Alkenylations of Indazoles: Application to the Synthesis of Gamendazole</u>

M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, *Org. Lett.*, **2015**, *17*, 4320.

#### **I.Introduction**

Jusqu'à présent, nous nous sommes intéressés à la fonctionnalisation du noyau indazole substitué en positions 3 et 7 via des réactions d'arylations où d'hétéroarylations directes. Maintenant nous allons développer une nouvelle séquence concernant l'alcènylation palladocatalysée et ce, pour accroître la diversité autour des positions 3 et 7.

Le système indazole s'avère un motif omniprésent dans diverses molécules biologiquement actives. 14 De plus, plusieurs médicaments ou candidats médicaments contiennent le motif indazole tels que le pazopanib (Votrient), <sup>201</sup> la benzydamine, <sup>202</sup> le bendazac, <sup>203</sup> le granisétron (Kytril), <sup>204</sup> la tétrydamine (ou tétridamine) <sup>205</sup> et le gamendazole. <sup>206</sup> De ce fait, le développement de nouvelles méthodes de synthèse d'indazoles fonctionnalisés originaux constitue un challenge particulièrement intéressant. La réaction de type Heck, également appelé réaction de Fujiwara-Moritani, a reçu une attention considérable au cours de la dernière décennie. 207,208 Bien que plusieurs systèmes hétérocycliques aient été alcénylés via des réactions de CH-alcénylations, <sup>209</sup> à notre connaissance, les (1H)- et (2H)-indazoles n'ont

<sup>&</sup>lt;sup>201</sup> S. V. Keisner, S. R. Shah, *Drugs.* **2011**, 71, 443.

<sup>&</sup>lt;sup>202</sup> a) B. Catanese, A. Lagana, A. Marino, R. Picollo, M. Rotatori, *Pharmacol. Res. Commun.* **1986**, *18*, 385. b) G. A. Baldock, R. R. Brodie, L. F. Chasseaud, T. J. Taylor, J. Chromatogr., Biomed. Appl. 1990, 529, 113. c) D. H. Lang, A. E. Rettie, Br. J. Clin. Pharmacol. 2000, 50, 311. d) E. Stormer, I. Roots, J. Brockmoller, Br. J. Clin. Pharmacol. 2000, 50, 553.

<sup>&</sup>lt;sup>203</sup> a) H. Shen, S. Gou, J. Shen, Y. Zhu, Y. Zhang, X. Chen, *Bioorg. Med. Chem. Lett.* **2010**, 20, 2115. b) L. Saso, B. Silvestrini, Med. Hypotheses. 2001, 56, 114. c) J. J. Harding, Drugs Aging 1992, 2, 287.

<sup>&</sup>lt;sup>204</sup> a) A. Chaturvedula, D. P. Joshi, C. Anderson, R. Morris, W. L. Sembrowich, A. K. Banga, *Pharm. Res.* **2005**, 22, 1313. b) J. Bermudez, C. S. Fake, G. F. Joiner, K. A. Joiner, F. D. King, W. D. Miner, G. J. Sanger, J. Med. Chem. 1990, 33, 1924.

<sup>&</sup>lt;sup>205</sup> a) S. Ballesteros, M. F. Ramon, R. Martinez-Arrieta, Clin. Toxicol. 2009, 47, 150. b) S. Manzardo, R. Girardello, A. Pinzetta, G. Coppi, D. De Aloysio, Boll. Chim. Farm. 1992, 131, 113. c) S. Pugliares, M. Jacobellis, Minerva Ginecol. 1991, 43, 245.

<sup>&</sup>lt;sup>206</sup> a) A. Veerareddy, G. Surendrareddy, P. K. Dubey, Synth. Commun. 2013, 43, 2236. (b) I. G. George, J. S. Tash, R. Chakrasali, J. Sudhakara Rao, J. P. Calvet, U.S. Patent 20090197911, 2009, Chem. Abstr. 2009, 151,

<sup>236718.

207</sup> Pour des articles récents concernant la C-H alcénylation, voir: D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu,

207 Pour des articles récents concernant la C-H alcénylation, voir: D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu,

208 Paraman I A Ellman. Org. Lett. 2011, 13, 540. c) B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu, J. Zhu, J. Am. Chem. Soc. 2013, 135, 468. d) L. Huang, Q. Wang, J. Qi, X. Wu, K. Huang, H. Jiang, Chem. Sci. 2013, 4, 2665. e) A. Deb, S. Bag, R. Kancherla, D. Maiti, J. Am. Chem. Soc. **2014**, *136*, 13602.

<sup>&</sup>lt;sup>208</sup> Pour des revues récentes concernant la C-H alcénylation, voir: a) H. Cho, S. J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068. b) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem., Int. Ed. 2012, 51, 10236. c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814. d) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651. e) L. Zhou, W. Lu, Chem. - Eur. J. 2014, 20, 634. <sup>209</sup> Pour des références récentes de la CH-alcénylation d'hétéroarènes, voir : a) B. Gong, J. Shi, X. Wang, Y. Yan, O. Li, Y. Meng, H. E. Xu, W. Yi, Adv. Synth. Catal. 2014, 356, 137. b) Y. Su, H. Zhou, J. Chen, J. Xu, X. Wu, A. Lin, H. Yao, Org. Lett. 2014, 16, 4884. c) D. Kang, J. Cho, P. H. Lee, Chem. Commun. 2013, 49, 10501. d) W. Liu, S. Wang, Q. Zhang, J. Yu, J. Li, Z. Xie, H. Cao, Chem. - Asian J. 2014, 9, 2436. e) Á. M. Martínez, N. Rodríguez, R. G. Arrayás, J. C. Carretero, Chem. Commun. 2014, 50, 6105. (f) J. Tang, M. Cong, Y. Xia, G. Quéléver, Y. Fan, F. Qu, L. Peng, Org. Biomol. Chem. 2015, 13, 110. g) Z.-L. Yan, W.-L. Chen, Y.-R. Gao, S. Mao, Y.-L. Zhang, Y.-Q. Wang, Adv. Synth. Catal. 2014, 356, 1085. h) K. Wu, P. Wu, L. Wang, J.

jamais été utilisés comme substrats pour la réaction de Fujiwara-Moritani. En outre, l'alcénylation oxydative sur le noyau à six chaînons des systèmes 6,5-bicycliques ne contenant pas d'hétéroatome sur le cycle à six chaînons et au moins un hétéroatome sur le noyau à cinq chaînons est assez rare. Seuls deux exemples d'alcénylation en C7 de l'indole faisant appel à des groupes directeurs ont été publiés jusqu'à présent. Récemment, nous avons (voir chapitre 3 et 4) ainsi que d'autres rapporté l'arylation directe des (1H)- $^{176a,181,211}$  et (2H)-indazoles  $^{173}$ . Dans la poursuite de notre programme de recherche sur le développement de nouvelles procédures pour l'activation C-H en série indazolique, nous traiterons dans ce chapitre de l'alcénylation pallado-catalysée oxydative en C3 des (2H)- et (1H)-indazoles ainsi que de l'alcénylation en C7 des (1H)-indazoles. Nous décrirons également une synthèse en trois étapes du gamendazole après avoir mis au point la séquence sur un composé modèle, à savoir l'acide 6-nitro-1-(2,4-dichlorobenzyl)-3-acrylique et ce, en utilisant l'alcénylation directe en C3 d'un (1H)-indazole judicieusement fonctionnalisé.

### II. Etat de la littérature sur la réaction d'alcénylation directe pallado-catalysée

L'alcénylation directe d'(hétéro)cycles pose un défi eu égard à la régiosélectivité de la réaction. Cependant, dans le cas de l'alcénylation intermoléculaire directe des entités aryliques, la régiosélectivité dépend du type d'entités hétérocycliques, ainsi que de la nature électronique du catalyseur utilisé. Plus récemment, d'autres facteurs tels que le solvant, les additifs (par exemple les sels de CuI) et la nature du couple catalyseur / ligand ont été explorés pour contrôler la régiosélectivité de l'alcénylation en série hétérocyclique. En conséquence, cette partie bibliographique met en évidence les progrès dans le domaine de l'alcénylation directe des (hétéro)arènes selon la nature du catalyseur employé (Pd, Cu, Ru, Rh ···).

Malgré le développement de nombreuses méthodes destinées à la fonctionnalisation de la liaison C-H *via* des réactions d'oxydations catalysées par le palladium, <sup>212</sup> il existe peu

Chen, C. Sun, Z. Yu, *Adv. Synth. Catal.* **2014**, *356*, 3871. i) C.-E. Kim, J.-Y. Son, S. Shin, B. Seo, P. H. Lee, *Org. Lett.* **2015**, *17*, 908.

<sup>&</sup>lt;sup>210</sup> a) V. Lanke, K. R. Prabhu, *Org. Lett.* **2013**, *15*, 2818. b) J. Shi, Y. Yan, Q. Li, H. E. Xu, W. Yi, *Chem. Commun.* **2014**, *50*, 6483.

<sup>&</sup>lt;sup>211</sup> a) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhang, J.-Q. Yu, *Chem. Sci.* **2013**, *4*, 2374.

<sup>&</sup>lt;sup>212</sup> a) C. Jia, T. Kitamura, Y. Fujiwara, *Acc. Chem. Res.* **2001**, *34*, 633. b) E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, *Chem. Rev.* **2007**, *107*, 5318. c) J. Tsuji, *Palladium Reagents and Catalysts*, 2nd ed.; John Wiley & Sons: Chichester, U.K., **2004**.

d'exemples dans la littérature où cette méthodologie est adaptée à la réaction d'alcénylation de systèmes hétérocycliques.

En 1983, Itahara et coll.<sup>213</sup> ont réalisé la réaction d'alcénylation sur l'indole protégé avec des oléfines (schéma 105).

#### Schéma 105

L'étude de la réaction sur l'indole lui-même a été développé par Gaunt et ses collaborateurs<sup>214</sup> et ce, au départ de divers alcènes. Fait intéressant, il a été observé que la régiosélectivité de l'oléfination entre les sommets C2 et C3 de l'indole peut être contrôlée par le choix des oxydants et des solvants utilisés. C'est ainsi que l'oléfination des indoles en C3 est obtenue dans des solvants polaires tels que le DMF ou le DMSO en combinaison avec Cu(OAc)<sub>2</sub> comme oxydant, tandis que l'oléfination en C2 a principalement lieu en présence d'oxydant de type peroxyde dans un mélange de solvant 1,4-dioxane/AcOH (schéma 106).

#### Schéma 106

Le cycle catalytique proposé est représenté dans le schéma 107. Dans une première étape, a lieu la palladation électrophile en C3 de l'indole, suivie d'une réaromatisation offrant

<sup>&</sup>lt;sup>213</sup> a) T. Itahara, M. Ikeda, T. Sakakibara, *J. Chem. Soc., Perkin Trans. I.* **1983**, 1361. b) T. Itahara, K. Kawasaki, F. Ouseto, *Synthesis* **1984**, 236.

<sup>&</sup>lt;sup>214</sup> N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, *Angew. Chem., Int. Ed.* **2005**, 44, 3125.

un intermédiaire palladié en C3, qui fournit l'accès en fin de compte au vinylindole en C3 probablement grâce à l'insertion d'oléfines avec le palladium « Ar-Pd » puis  $\beta$ -élimination. D'autre part, il a été estimé que l'augmentation de la concentration de l'acide peut être responsable de la régiosélectivité. L'environnement acide peut ralentir l'étape de déprotonation, au lieu de permettre une migration de la liaison C3-PdX à la position C2, permettant ainsi une voie d'oléfination en C2 à la fin.  $^{214}$ 

Schéma 107

A noter que cette même réaction d'alcénylation $^{215}$  réalisée sur le 4-bromoindole constitue l'étape clef lors de la synthèse totale de l'acide Clavicipitic **A** (schéma 108).

#### Schéma 108

Récemment, il a été montré que dans le cas du *N*-(2-pyridylméthyl) indole, <sup>216</sup> le substituant 2-pyridylméthyle joue le rôle de groupement orienteur favorisant la réaction sur la position 2 de l'indole (schéma 109).

<sup>&</sup>lt;sup>215</sup> Y. Yokoyama, T. Matsumoto, Y. Murakami, J. Org. Chem. **1995**, 60, 1486.

<sup>&</sup>lt;sup>216</sup> E. Capito, J. M. Brown, A. Ricci, *Chem. Commun.* **2005**, 1854.

#### Schéma 109

Nous pouvons également citer la méthode décrite par Doucet et ses collaborateurs<sup>217</sup> concernant la formation directe de la liaison C-C entre des alcènes bromés disubstitués ou trisubstitués et des hétérocycles riches en électrons comme le benzoxazole ou le benzothiazole. Ces auteurs utilisent un système catalytique [PdCl(dppb)(η<sub>3</sub>-C<sub>3</sub>H<sub>5</sub>)] au sein du DMF en présence de Cs<sub>2</sub>CO<sub>3</sub> comme base, les produits souhaités étant obtenus avec des rendements moyens à bons (Schéma 110).

#### Schéma 110

La même année, Koubachi et *al*.<sup>177c</sup> ont étudié la synthèse des 3-alcénylimidazo[1,2-a]pyridines par C-H alcénylation. Cette séquence, catalysée par le palladium, a lieu au départ d'imidazo[1,2-*a*]pyridines qui sont traités par des bromoalcènes sous irradiation micro-ondes. Elle utilise le couple catalyseur / ligand Pd(OAc)<sub>2</sub> / AsPh<sub>3</sub> dans le DMF à 130 °C en présence de Ag<sub>2</sub>CO<sub>3</sub>/Et<sub>3</sub>N comme bases et permet d'accéder sélectivement aux composés correspondants substitués en position 3 (schéma 111).

Schéma 111

<sup>&</sup>lt;sup>217</sup> A. L. Gottumukkala, F. Derridj, S. Djebbar, H. Doucet, *Tetrahedron Lett* **2008**, 49, 2926.

Par ailleurs, Zhang et *coll*.<sup>218</sup> ont appliqué avec succès la stratégie de l'alcénylation pallado-catalysée au départ des indolizines pour obtenir des produits oléfiniques ramifiés (Schéma 5). La régiosélectivité est facilement contrôlée par l'utilisation de ligands bidentés azotés, comme la 2,2'-bipyridine. Il a été montré que l'utilisation de ligands monodentés favorise une voie neutre conduisant aux isomères oléfiniques linéaires et que, par contre, la voie ionique se révèle prédominante lors de la présence de ligands bidentés permettant ainsi l'obtention d'oléfines ramifiées en tant que produit majoritaire (schéma 112).

#### Schéma 112

La même année, cette même équipe<sup>219</sup> a décrit l'alcénylation directe des thiophènes et des furanes catalysée par le palladium, la séquence étant conduite en présence d'acétate d'argent et de pyridine. Une grande variété de dérivés oléfiniques mono-alcénylés par des acrylates, des acrylamides et de l'acrylonitrile a été obtenue avec de bons rendements. Dans la plupart des cas, les isomères (E) sont isolés comme produits majoritaires (schéma 113).

Schéma 113

<sup>&</sup>lt;sup>218</sup> Y. Yang, K. Cheng, Y. Zhang, Org. Lett., 2009, 11, 5606.

<sup>&</sup>lt;sup>219</sup> J. Zhao, L. Huang, K. Cheng, Y. Zhang, *Tetrahedron Lett* **2009**, *50*, 2758.

Deux années plus tard, Piguel et ses collaborateurs<sup>220</sup> ont développé l'alcénylation directe en C8 des purines et des azoles avec divers bromures styréniques par activation microondes, la tolérance de divers groupes fonctionnels et la rapidité de la réaction rendant cette méthode particulièrement appropriée pour la synthèse de purines polyfonctionnalisées (schéma 114).

#### Schéma 114

En 2014, Wang et *al.*<sup>221</sup> ont rapporté une réaction d'alcénylation oxydante régiosélective et efficace catalysée par le palladium entre des thiazolo[3,2-*b*]-1,2,4-triazoles et des alcènes. Ce protocole offre un accès facile à une grande variété de dérivés thiazolo[3,2-*b*]-1,2,4-triazoliques fonctionnalisés, les produits désirés étant obtenus avec des rendements moyens à bons (schéma 115).

#### Schéma 115

Très récemment, l'équipe de Yong-Qiang Wang<sup>222</sup> a mis au point une méthode générale et efficace pour l'alcénylation intermoléculaire directe et sélective en C7 des indolines, à l'aide de palladium (II) comme catalyseur et d'oxygène moléculaire en tant qu'oxydant. A noter que cette réaction a montré une totale régio- et stéréosélectivité, tous les produits générés possédant une stéréochimie (E).

<sup>&</sup>lt;sup>220</sup> R. Vabre, F. Chevot, M. Legraverend, S. Piguel, J. Org. Chem. 2011, 76, 9542.

<sup>&</sup>lt;sup>221</sup> W. Liu, S. Wang, H. Zhan, J. Lin, P. He, Y. Jiang, *Tetrahedron Lett* **2014**, 55, 3549.

<sup>&</sup>lt;sup>222</sup> D. Yang, S. Mao, Y.-R. Gao, D.-D. Guo, S.-H. Guo, B. Li, Y.-Q. Wang, RSC Advances. 2015, 5, 23727.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

#### Schéma 116

Parallèlement, Satoh et Miaura<sup>223</sup> ont rapporté l'alcénylation directe régiosélective pallado-catalysée en C2 de thiéno[3,2-b]thiophènes, cette procédure fournissant des voies de synthèse simples vers diverses molécules  $\pi$ -conjuguées contenant un noyau thiophène.

Dans cette même publication les mêmes auteurs ont montré que l'alcénylation en position 3 du noyau carbazole est également possible.

Schéma 117

# III. Réaction d'alcénylation directe sur le sommet 3 des indazoles N-méthylés en position 2 *via* des réactions catalysées par le palladium

#### III.1 Préparation des 2*H*-indazoles *N*-méthylés

Pour effectuer cette réaction de méthylation nous avons utilisé les conditions décrites par A. Stafford et coll.<sup>224</sup>, à savoir 1.3 équivalents de tétrafluoroborate de triméthyloxonium [(CH<sub>3</sub>)<sub>3</sub>O<sup>+</sup>BF<sup>-</sup><sub>4</sub>)] utilisés comme agent de méthylation avec pour solvant l'acétate d'éthyle et ce, à température ambiante pendant 5 heures (schéma 118). Ces conditions opératoires ont

<sup>&</sup>lt;sup>223</sup> T. Morita, T. Satoh, M. Miura, Org. Lett. 2015, 17, 4384.

<sup>&</sup>lt;sup>224</sup> M. Cheung, A. Boloor, J. A. Stafford, J. Org. Chem. **2003**, 68, 4093.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

permis d'obtenir exclusivement les isomères *N*-2 méthylés avec d'excellents rendements (tableau 17).

$$G = H$$

$$G = 4,5,6,7-NO_{2}$$

$$G = 6-CN$$

$$G = 5-CF_{3}$$

$$G = 5-F$$

$$G = 5-OMe$$

$$G = 6-CN$$

$$G = 5-CF_{3}$$

$$G = 5-CF_{3}$$

$$G = 6-CN$$

$$G = 5-CF_{3}$$

$$G = 5-F$$

$$G = 5-OMe$$

$$G = 6-CN$$

$$G = 5-CF_{3}$$

$$G = 6-CN$$

$$G =$$

Schéma 118

Tableau 17 : Préparation des indazoles de départ

| Entrée | Produits | G                 | Rdt (%) <sup>a</sup> |
|--------|----------|-------------------|----------------------|
| 1      | 63a      | Н                 | 93                   |
| 2      | 63b      | 4-NO <sub>2</sub> | 89                   |
| 3      | 63c      | 5-NO <sub>2</sub> | 90                   |
| 4      | 63d      | 6-NO <sub>2</sub> | 87                   |
| 5      | 63e      | 7-NO <sub>2</sub> | 91                   |
| 6      | 63f      | 6-CN              | 86                   |
| 7      | 63g      | 5-CF <sub>3</sub> | 95                   |
| 8      | 63h      | 5-F               | 89                   |
| 9      | 63i      | 5-OMe             | 96                   |

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé par chromatographie sur gel de silice.

### III.2 Optimisation sur le 2-méthyl-2*H*-indazole des conditions d'alcénylation directe en position 3

En se basant sur le savoir-faire du laboratoire, nous avons commencé l'optimisation par l'étude de la condensation du 2-méthyl-2*H*-indazole sur l'acrylate d'éthyle en présence de Pd(OAc)<sub>2</sub> comme catalyseur et Cu(OAc)<sub>2</sub>, CuO, voire Ag<sub>2</sub>CO<sub>3</sub> comme oxydant. Les réactions, menées dans le xylène et sans additifs, ont permis d'accéder au produit **64** alcénylé en C-3 avec des rendements modérés (44 à 70%, tableau 18, entrées 1 à 3). Lorsque l'acide acétique (AcOH), l'anhydride acétique (Ac<sub>2</sub>O), ou un mélange de AcOH / Ac<sub>2</sub>O sont ajoutés comme additif dans le milieu, des améliorations significatives au niveau des rendements de la réaction sont observées (tableau 18, entrées 4-6).

Le remplacement du xylène par le dioxane que ce soit en présence ou en absence d'additifs se traduit par l'obtention de rendements plus faibles (tableau 18, entrées 7-

9). Lorsque Ag<sub>2</sub>CO<sub>3</sub> est utilisé comme oxydant en présence d'AcOH / Ac<sub>2</sub>O, le composé souhaité **64** est isolé avec un très bon rendement (tableau 18, entrée 10). Au cours de l'essai 11, l'emploi de seulement 5 mole % de Pd(OAc)<sub>2</sub> au lieu de 10 mole %, n'a entraîné aucune diminution significative du rendement de la réaction (tableau 18, entrée 11). A noter que toutes les autres tentatives pour améliorer le rendement en réutilisant le xylène (tableau 18, entrée 12), ou en modifiant l'oxydant (tableau 18, entrées 17 et 18), l'additif (tableau 18, entrées 19 et 20), ou le catalyseur (tableau 18, entrées 21 et 22) ont échoué (tableau 1, entrées 13-23).

Les conditions apportant les meilleurs résultats sont définies comme suit : 5 mol% de Pd(OAc)<sub>2</sub>, 2,5 équivalents de Ag<sub>2</sub>CO<sub>3</sub>, 1 équivalent d'AcOH et 1 équivalent d'Ac<sub>2</sub>O dans le dioxane à 120°C sous atmosphère d'argon.

Tableau 18 : Optimisation de l'alcénylation directe en C3 du 2-méthyl-2*H*-indazole **62a**.

| Entrée | Catalyseur                 | Oxydant                         | Additif                | Solvant | Temps (h) | Rdt (%) <sup>a</sup> |
|--------|----------------------------|---------------------------------|------------------------|---------|-----------|----------------------|
| 1      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | -                      | Xylène  | 24        | 70                   |
| 2      | Pd(OAc) <sub>2</sub> (10%) | CuO                             | -                      | Xylène  | 18        | 44 (31) <sup>b</sup> |
| 3      | Pd(OAc) <sub>2</sub> (10%) | $Ag_2CO_3$                      | -                      | Xylène  | 18        | 54 (23) <sup>b</sup> |
| 4      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | АсОН                   | Xylène  | 18        | 78                   |
| 5      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | $Ac_2O$                | Xylène  | 18        | 73                   |
| 6      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | AcOH/Ac <sub>2</sub> O | Xylène  | 18        | 79                   |
| 7      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | -                      | Dioxane | 24        | 64                   |
| 8      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | АсОН                   | Dioxane | 18        | 75                   |
| 9      | Pd(OAc) <sub>2</sub> (10%) | $Cu(OAc)_2$                     | AcOH/Ac <sub>2</sub> O | Dioxane | 18        | 51 (24) <sup>b</sup> |
| 10     | Pd(OAc) <sub>2</sub> (10%) | Ag <sub>2</sub> CO <sub>3</sub> | AcOH/Ac <sub>2</sub> O | Dioxane | 18        | 88                   |

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

| 11 | Pd(OAc) <sub>2</sub> (5%)            | $Ag_2CO_3$ | AcOH/Ac <sub>2</sub> O  | Dioxane | 18 | 87                   |
|----|--------------------------------------|------------|-------------------------|---------|----|----------------------|
| 12 | Pd(OAc) <sub>2</sub> (5%)            | $Ag_2CO_3$ | AcOH/Ac <sub>2</sub> O  | Xylène  | 18 | 79                   |
| 13 | Pd(OAc) <sub>2</sub> (5%)            | $Ag_2CO_3$ | PivOH/Ac <sub>2</sub> O | Dioxane | 18 | 67                   |
| 14 | $Pd(OAc)_2$                          | $Ag_2CO_3$ | АсОН                    | Dioxane | 18 | 75                   |
| 15 | (5%)<br>Pd(OAc) <sub>2</sub>         | $Ag_2CO_3$ | PhCOOH                  | Dioxane | 18 | 59                   |
| 16 | (5%)<br>Pd(OAc) <sub>2</sub>         | $Ag_2CO_3$ | $Ac_2O$                 | Dioxane | 18 | 50 (17) <sup>b</sup> |
| 17 | (5%)<br>Pd(OAc) <sub>2</sub><br>(5%) | AgOAc      | AcOH/Ac <sub>2</sub> O  | Dioxane | 18 | 69                   |
| 18 | $Pd(OAc)_2$                          | $AgNO_3$   | AcOH/Ac <sub>2</sub> O  | Dioxane | 18 | 65                   |
| 19 | (5%)<br>Pd(OAc) <sub>2</sub>         | $Ag_2CO_3$ | BQ/AcOH                 | Dioxane | 18 | 77                   |
| 20 | (5%)<br>Pd(OAc) <sub>2</sub>         | $Ag_2CO_3$ | PhCOOH/ AcOH            | Dioxane | 18 | 61                   |
| 21 | (5%)<br>Pd/C 5%                      | $Ag_2CO_3$ | AcOH/Ac <sub>2</sub> O  | Dioxane | 18 | 56 (24) <sup>b</sup> |
| 22 | $Pd(PPh_3)_4 5\%$                    | $Ag_2CO_3$ | AcOH/Ac <sub>2</sub> O  | Dioxane | 18 | 39 (36) <sup>b</sup> |

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé par chromatographie sur gel de silice.

### III.3 Généralisation de la réaction d'alcénylation directe au départ de divers indazoles méthylés en 2

Afin de valider notre stratégie de C-H alcénylation directe, nous avons envisagé de l'appliquer à différents 2*H*-indazoles substitués **63a-i** avec soit des acrylates, l'acrylonitrile, le *N-tert*-butyl acrylamide, voire des vinylarènes en tant que partenaires de couplage.

Le traitement de l'indazole **63a** par différents acrylates conduit aux produits attendus **64a-f** avec de très bons rendements (77% à 93%) sans aucune trace de produit de départ (entrées 1-6, tableau 19). Tous les essais donnent bien lieu à des réactions régiosélectives en position 3 des 2*H*-indazoles (entrées 1-18, tableau 19). Lorsque le *N*-tert-butylacrylamide est utilisé comme oléfine, le produit alcénylé correspondant **64g** est obtenu avec un rendement de 75% (entrée 7, tableau 19). Des rendements modérés sont observés lorsque le styrène ou le 4-méthoxystyrène ont été employés, les produits désirés **64h** et **64i** étant isolés avec des rendements respectivement de 57% et 65% (entrées 8,9, tableau 19). En revanche, l'utilisation de l'acrylonitrile comme partenaire de couplage conduit au produit souhaité **64j** avec un rendement relativement faible de 51 %. A noter que la réaction n'est pas complète et que le

<sup>&</sup>lt;sup>b</sup> Pourcentage de produit de départ récupéré.

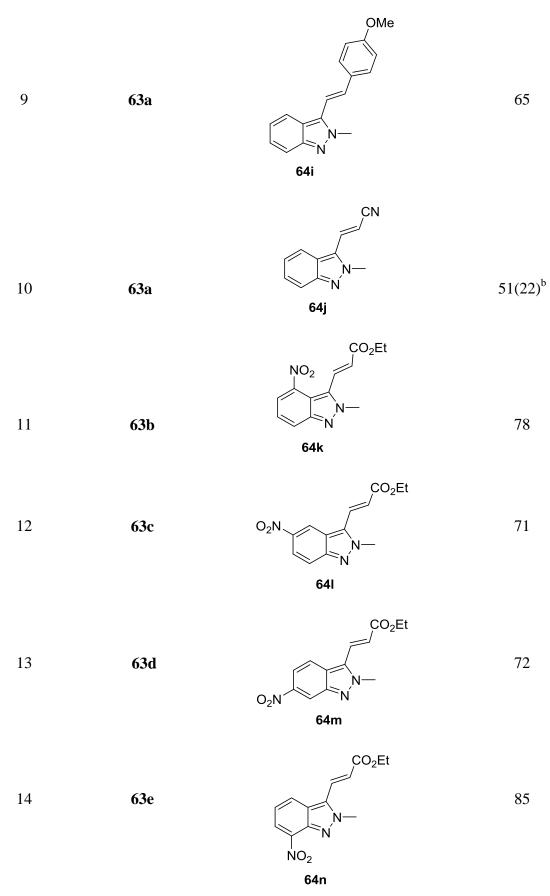
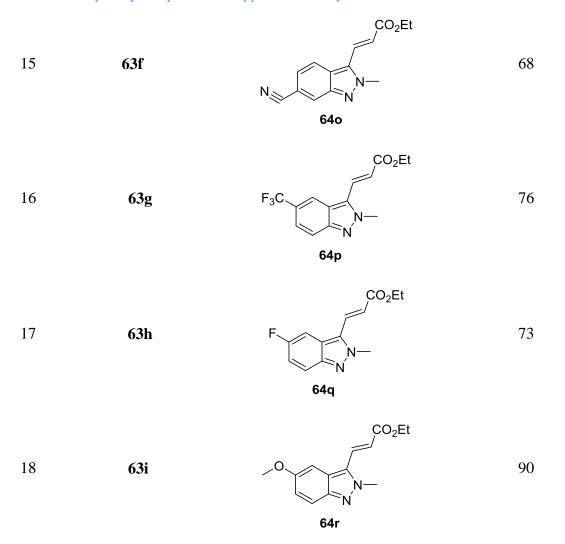

produit de départ est partiellement récupéré (entrée 10, tableau 19). Nous avons ensuite généralisé cette séquence au départ de 2*H*-indazoles diversement substitués sur le noyau aromatique. Le traitement de **63b-i** avec de l'acrylate d'éthyle dans les conditions de la réaction optimisées conduit aux produits attendus **64k-r** avec des rendements compris entre 68% et 90% (entrées 11-18, tableau 19).

Tableau 19 : Généralisation de la réaction d'alcénylation directe des 2*H*-indazoles


| Entrée | Produit de départ | Produit                         | Rdt (%) <sup>a</sup> |
|--------|-------------------|---------------------------------|----------------------|
| 1      | 63a               | CO <sub>2</sub> Me<br>N—<br>64a | 88                   |
| 2      | 63a               | CO <sub>2</sub> tBu N 64b       | 79                   |
| 3      | 63a               | CO <sub>2</sub> Bn              | 83                   |

### Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

### Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »



Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »



<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé après purification sur colonne de silice.

#### III.4 Mécanisme de la réaction d'alcénylation en position 3

Un mécanisme possible pour l'alcénylation oxydative pallado-catalysée est présenté dans le schéma 119.

b Pourcentage de produit de départ **63a** récupéré malgré la prolongation de temps de réaction jusqu'à 48h.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

Ag(II) 
$$Pd(OAc)_2$$

Pd(OAc)

(B)

H PdOAc

HOAc

CO<sub>2</sub>Et

PdOAc

HOAc

Schéma 119

Le cycle catalytique est initié par l'attaque électrophile du palladium (II) (**A**) sur la position 3 du 2-méthylindazole **63a**, suivie par une réaromatisation de l'intermédiaire (**B**) pour générer (**C**). L'intermédiaire indazole Pd(II) (**C**) réagit avec l'acrylate d'éthyle pour conduire au complexe de palladium (II) (**D**) similaire à l'intermédiaire du mécanisme de Heck qui donne l'isomère (E) **64** par  $\beta$ -élimination. Le Pd(0) résultant est alors oxydé par Ag<sub>2</sub>CO<sub>3</sub> en Pd(II) pour accomplir un nouveau cycle catalytique.

# IV. Application de la réaction d'alcénylation directe sur le 1-méthylindazole

### IV.1 Optimisation des conditions d'alcénylation directe en position 3 sur le 1-méthylindazole

Nous avons poursuivi nos recherches sur le squelette indazole, en utilisant, cette fois comme substrat de départ le 1-méthylindazole **31** dans des conditions de réaction similaires à celles développées préalablement. Nous avons, ainsi, pu réaliser l'alcénylation régiosélective en C3 du composé précité avec succès, ce qui permet d'accéder au produit attendu **65** avec un rendement de 67% (tableau 20, entrée 1). Diverses modifications de certains paramètres de la

réaction (par exemple, l'oxydant et / ou l'additif) se sont traduits par une diminution souvent spectaculaire du rendement (tableau 20, entrées 2-4).

Tableau 20 : Optimisation de l'alcénylation en C3 du 1*H*-indazole 31.

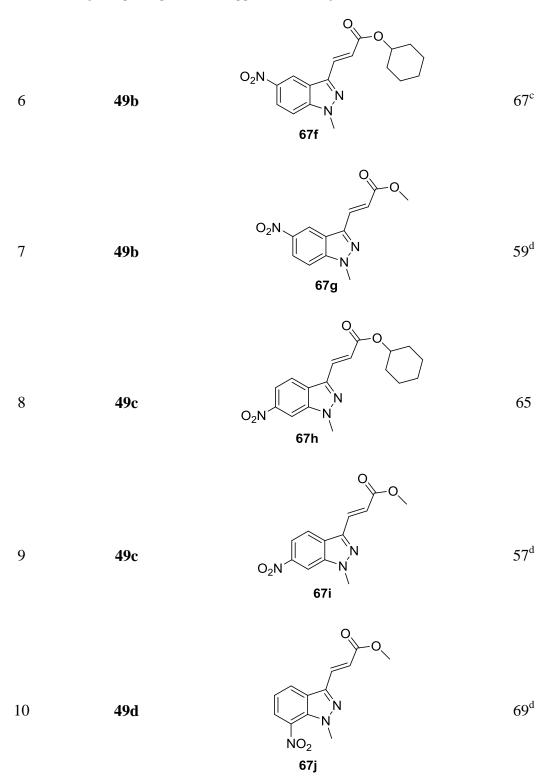
| Entrée | Oxidant              | Additive               | Rdt (%) <sup>a</sup> |
|--------|----------------------|------------------------|----------------------|
| 1      | $Ag_2CO_3$           | AcOH/Ac <sub>2</sub> O | 67                   |
| 2      | Cu(OAc) <sub>2</sub> | АсОН                   | 0 (89) <sup>b</sup>  |
| 3      | $Ag_2CO_3$           | PhCOOH/ AcOH           | 27 (41) <sup>b</sup> |
| 4      | $Ag_2CO_3$           | BQ/AcOH                | 45 (23) <sup>b</sup> |

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé par chromatographie sur gel de silice.

BQ: 1,4-Benzoquinone

#### IV.2 Généralisation

Une fois les conditions de la réaction optimisées, nous avons ensuite envisagé la généralisation de cette séquence.


Tableau 21 : Alcénylation oxydative en C3 des 1*H*-indazoles **31**, **49a-d** et **66**.

<sup>&</sup>lt;sup>b</sup> Produit de départ récupéré.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles N-méthylés en position 1 ou 2 via des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

| Entrée | Produit de départ | Produit                 | Rdt (%) <sup>a</sup> |
|--------|-------------------|-------------------------|----------------------|
| 1      | 31                | 0<br>0<br>N<br>67a      | 73                   |
| 2      | 31                | 67b                     | 78                   |
| 3      | 31                | OMe<br>N<br>67c         | 49                   |
| 4      | 31                | CN<br>N<br>67d          | 45 (25) <sup>b</sup> |
| 5      | 31                | 0<br>0<br>N<br>N<br>67e | 71                   |

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles N-méthylés en position 1 ou 2 via des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »



Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

<sup>a</sup> Rendement en produit isolé après purification sur colonne de silice.

Dans le cas du 1-méthylindazole non substitué **31**, le traitement par l'acrylate de méthyle, l'acrylate de cyclohexyle, l'acrylonitrile ou le 4-méthoxystyrène permet l'obtention des produits souhaités **67a-d** avec des rendements modérés à bons (45 à 78%, tableau 21). L'indazole **66** possédant un groupe méthoxy en position 5 a également subi la réaction d'alcénylation avec l'acrylate de méthyle pour donner le produit attendu **67e** avec un rendement de 71%.

Comme nous l'avons indiqué précédemment lors de l'arylation directe des indazoles substitués par des groupes attracteurs d'électrons sur le noyau benzénique, <sup>200</sup> une compétition entre l'alcénylation en C3 et C7 a lieu. Ainsi lorsque le 1-méthyl-5-nitroindazole **49b** est traité par l'acrylate de cyclohexyle, cette réaction conduit à deux produits, le produit alcénylé en C3 **67f** et le produit dialcénylé en C3 et C7 **67l** (tableau 21). Ce phénomène n'a pas été observé quand nous avons fait réagir le composé **49b** avec l'acrylate de méthyle. Dans ce cas, seul le produit alcénylé en C3 **67g** est généré. De même, lorsque le 1-méthyl-6 nitroindazole **49c** est engagé avec de l'acrylate de cyclohexyle, nous avons seulement isolé le produit **67h** alcénylé en C3. Le traitement du 1-méthyl-6-nitroindazole **49c** ou du 1-méthyl-7-nitroindazole **49d** par l'acrylate de méthyle conduit aux produits prévus **67i** et **67j** (tableau 21) avec des rendements de respectivement 57 et 69%. Étonnamment, l'alcénylation oxydative du 4-nitroindazole **49a** a donné exclusivement le produit **67k** alcénylé en position 3 avec un rendement de 54%, alors qu'au contraire l'arylation directe de **49a** fournit uniquement le produit arylé en position 7 (voir chapitre 4).

<sup>&</sup>lt;sup>b</sup> Pourcentage de produit de départ **31** récupéré.

<sup>&</sup>lt;sup>c</sup> 17% de produit dialcénylé **671** ont également été isolés.

<sup>&</sup>lt;sup>d</sup> Temps de réaction prolongé jusqu'à 48h.

## V. Alcénylation directe en C7 du (E)-3-(1-méthyl-5-nitro-1H-indazole-3-yl) acrylate de cyclohexyle

Il est intéressant de souligner que le traitement de **67f** par 3 équivalents d'acrylate de cyclohexyle permet d'accéder au produit dialcénylé **67l** avec un rendement de 53% (Schéma 120). Suite à ce résultat encourageant, nous avons décidé par la suite d'explorer l'alcénylation en C7 des 1*H*-indazoles déjà substitués en position 3.

#### Schéma 120

# VI. Extension de la réaction d'alcénylation directe en position 7 sur le 1-méthyl-3-phénylindazole

Pour connaître la portée et les limitations de cette nouvelle réaction d'alcénylation en C7 des 1*H*-indazoles, divers 3-phényl-1-méthylindazoles **50a-c**, **54a-d** et **54f** ont été preparés<sup>201</sup> en tant que substrats de départ puis mis en présence d'acrylate de méthyle ou d'acrylate de cyclohexyle en tant qu'agent d'alcénylation. La réaction se déroule avec succès, conduisant aux produits alcénylés en C7 **68a-h** souhaités avec des rendements oscillant de modérés à bons (tableau 22). Cependant, ces synthèses nécessitent des temps de réaction longs (48 h) pour avoir une conversion totale. Comme prévu, aucune conversion n'est observée lorsque le 3-phénylindazole **54f** ne possédant pas de substituant sur le cycle benzénique est traité par l'acrylate de méthyle, seul le produit de départ étant récupéré avec un rendement de 74%.

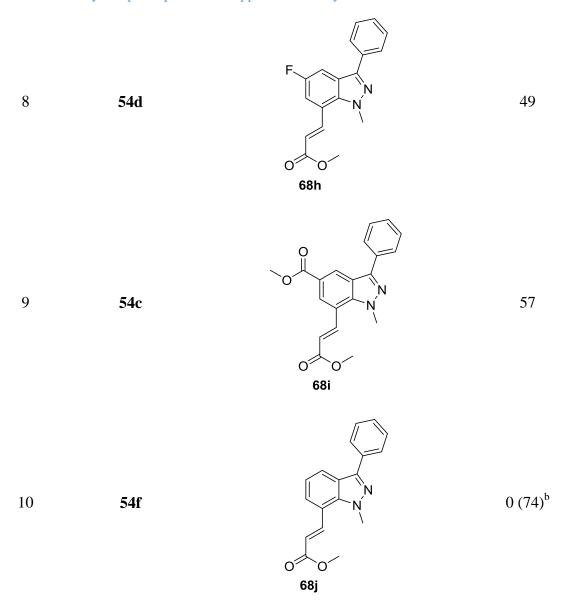

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

Tableau 22 : Généralisation de la réaction d'alcénylation oxydative en C7 des 1-méthyl-3-phénylindazoles.

| Entrée | Produit de départ | Produit                                              | Rdt (%) <sup>a</sup> |
|--------|-------------------|------------------------------------------------------|----------------------|
| 1      | 50a               | O <sub>2</sub> N N N N 68a                           | 61                   |
| 2      | 50a               | O <sub>2</sub> N N N N N N N N N N N N N N N N N N N | 69                   |
| 3      | 50b               | O <sub>2</sub> N N N N N N N N N N N N N N N N N N N | 51                   |

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles N-méthylés en position 1 ou 2 via des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »



<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé après purification sur colonne de silice.

#### VII. Mécanisme réactionnel

Comme nous l'avons déjà souligné dans le chapitre 4, nous avons supposé que la paire d'électrons libres de l'azote *NI* joue le rôle d'un groupe directeur pour l'alcénylation oxydative en position 7, *via* la coordination avec le palladium, permettant de stabiliser la liaison Pd-C.

Un mécanisme plausible est proposé dans le schéma 121. Dans un premier temps l'azote en position 1 de l'indazole se coordine au catalyseur (complexe **A**), ce qui, dans un deuxième temps, permet de générer le complexe **B** par C-H activation de la position 7 de l'indazole. Ce dernier réagit ensuite avec l'acrylate d'éthyle, pour former le complexe **C** similaire à

<sup>&</sup>lt;sup>b</sup> Pourcentage de produit de départ **54f** récupéré.

l'intermédiaire du mécanisme de Heck *via* une étape d'addition, ce dernier subit alors une βélimination pour générer le produit désiré de stéréochimie (E). Le Pd(0) résultant est oxydé par Ag<sub>2</sub>CO<sub>3</sub> en Pd(II) pour réaliser un nouveau cycle catalytique (schéma 121).

Schéma 121

# VIII. Application de la réaction d'alcénylation directe pour la synthèse du « Gamendazole »

Pour illustrer ce travail, nous avons décidé d'appliquer notre méthode à la synthèse du Gamendazole, candidat médicament pour la contraception masculine et ce, en utilisant seulement trois étapes au lieu des neuf décrites dans la littérature.<sup>206</sup>

### VIII.1 Intérêt biologique du Gamendazole et de ses analogues

Les contraceptifs masculins intéressent de plus en plus les scientifiques et les laboratoires, à condition d'être sûrs, efficaces, réversibles et tolérables. Plusieurs articles<sup>225</sup> proposent un état des progrès en matière de contraception masculine, avec quelques pistes qui méritent d'être approfondies lorsqu'elles concilient la sécurité, l'efficacité et l'accord des hommes pour les utiliser.

Une variété de procédés et produits ont été proposés ou développés pour la prévention de la grossesse. Ces produits comprennent la stérilisation chirurgicale, les préservatifs, les pilules contraceptives contenant un progestatif ou une combinaison de progestine et d'oestrogène, les implants sous-cutanés permettant une libération retardée de la progestérone, les dispositifs intra-utérins, les crèmes ou les gels spermicides et, enfin, certains obstacles intravaginaux tels que des éponges ou des diaphragmes.

Les approches contraceptives masculines ont inclus les méthodes de barrière, les méthodes hormonales, la méthode du rythme et des méthodes immunologiques. Plus récemment, les chercheurs ont commencé à s'intéresser aux composés qui inhibent la spermatogenèse en perturbant les sites existant entre les cellules de Sertoli et les cellules germinales dans les testicules. Parmis ces composés, le Gamendazole (composé II, figure 26) et le dérivé AF-2785 (composé I, figure 26), entrent dans la classe des acides acryliques, alors que la Lonidamine (composé III, figure 26) et l'Adjudine (composé IV, figure 26), font partie de la famille des acides carboxyliques et dérivés carbohydrazides. Ces composés ont montré des activités anti-spermatogenèses puissantes chez le rat, le lapin et le chien.

٠

<sup>Quelques articles concernant la contraception masculine, voir: a) G. Corsi, G. Palazzo, C. Germani, P. S. Barcellona, B. Silvestrini,</sup> *J. Med. Chem.* 1976, 19, 778. b) G. Palazzo, G. Corsi, L. Baiocchi, B. Silvestrini, *J. Med. Chem.* 1966, 9, 38. c) B. Silvestrini, *Chemotherapy* 1981, 27(Suppl.2), 9. d) B. Silvestrini, G. Palazzo, M. D. De Gregorio, *Progr. Med. Chem.* 1985, 21, 111. e) C. Y. Cheng, B. Silvestrini, J. Grima, M. Y. Mo, L. J. Zhu, E. Johnsson, L. Saso, M. G. Leone, M. Palmery, D. Mruk, *Biol. Reprod.* 2001, 65, 449. f) W. Xia, D. D. Mruk, W. M. Lee, C. Y. Ceng, *J. Endocrinol.* 2007, 192, 563. g) J. S. Tash, B. Attardi, S. A. Hild, R. Chakrasali, S. R. Jakkarg, G. I. Georg, *Biol. Reprod.* 2008, 78, 1127. h) O. Sarkar, Mathur, P. P. *Mol. Reprod. Dev.* 2009, 76, 31. i) K.-W. Mok, D. D. Mruk, P. P. Y. Lie, W.-Y. Lui, C. Y. Cheng, *Reproduction.* 2011, 141, 571. j) H. Wang, X. X. Chen, L.-R. Wang, Y.-D. Mao, Z. M. Zhou, J.-H. Sha, *Asian J. Androl.* 2010, 12, 322.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

Figure 25

Vu les activités biologiques prometteuses rencontrés, quelques méthodes pour la synthèse du gamendazole ont été développées.<sup>207</sup>

#### VIII.2 Les différentes méthodes de synthèse du Gamendazole

Après étude de la littérature, nous pouvons citer les travaux de George et *al.*<sup>207b</sup> qui ont rapporté la synthèse du Gamendazole **L132** à partir du 2-chloro-5-trifluorométhyl-1-nitrobenzène. Ce composé traité par le malonate de diméthyle est converti en diester **L123** qui subit une décarboxylation, générant le dérivé **L124**. Le motif nitro est ensuite réduit en amine puis protégé par un acétyle pour former le composé **L125**, composé qui est mis en réaction avec le nitrite de *tert*-butyle dans l'acide acétique, ce qui permet d'accéder à l'indazole **L126**. Cet indazole **L126**, traité par le 2,4-dichloro-1-(chlorométhyl) benzène, conduit aux intermédiaires **L127** et **L128** avec des rendements respectifs de 15% et 80%. L'ester indazolique **L128** est ensuite réduit avec l'hydrure de diisobutylaluminium en alcool **L129** qui est oxydé en aldéhyde **L130** avec l'oxyde de manganèse. Cet intermédiaire **L130** réagit avec le (carbéthoxyméthylène)triphénylphosphorane pour former le produit **L131**. S'en suit alors, l'hydrolyse du groupement ester du dérivé **L131** en acide carboxylique par LiOH dans un mélange THF / MeOH, ce qui se traduit par l'obtention du Gamendazole avec un rendement global de 31,5% (schéma 122).

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

#### Schéma 122

Par ailleurs, Veerareddy et ses collaborateurs<sup>226</sup> ont développé une méthode pour la synthèse de la molécule AF-2785 et du Gamendazole à partir d'acides 2-halogénobenzoïques *via* des 2-halo-α-cétoacides.

Les acides 2-halogénobenzoïques sont convertis en chlorures d'acides, puis en cyanocétones **L135**. Ces dernières sont transformées en 2-halogénophényles glyoxylates **L137** *via* les cétoamides **L136** avec des rendements respectifs de 85% et 82%. La conversion directe des cyanocétones **L135** en esters **L137** est également décrite, <sup>227</sup> mais avec des rendements modérés.

Ces esters L137 sont mis en réaction avec l'hydrazine monosubstituée L138 pour former les hydrazones L139, qui sont cyclisés en présence de dppf.PdCl<sub>2</sub> générant ainsi les esters indazoliques L140. Ces intermédiaires sont réduits avec du borohydrure de sodium ce qui permet d'obtenir les alcools L141 qui sont alors oxydés en aldéhydes L142 en présence du MnO<sub>2</sub>. Par la suite les aldéhydes sont convertis en acides acryliques par traitement avec l'acide malonique (condensation de Knoevenagel), cette séquence conduisant aux composés finaux, avec des rendements globaux qui n'excède pas 33% (schéma 123).

148

<sup>&</sup>lt;sup>226</sup> a) A. Veerareddy, G. Surendrareddy, P. K. Dubey, *Synth. Commun.* **2013**, *43*, 2236. b) A. Veerareddy, G. Surendrareddy, P. K. Dubey, *J. Heterocycl. Chem.* **2014**, *51*, 1311.

<sup>&</sup>lt;sup>227</sup> R. Waditschatka, *Chem. Abstr.* **2000**, *133*, 296279.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

Schéma 123

# VIII.3 Synthèse de l'acide 6-nitro-1-(2,4-dichlorobenzyl)-3-acrylique. Application à la préparation du Gamendazole

Nous avons décidé d'appliquer la méthode que nous avons imaginée à la synthèse d'un analogue du Gamendazole à savoir l'acide 6-nitro-1-(2,4-dichlorobenzyl)-3-acrylique) **77**<sup>228</sup> et ce, afin de démontrer le potentiel de la séquence envisagée dans la synthèse du produit biologiquement actif **78**.

Le traitement de l'indazole **69** commercialement disponible par le 2,4-dichloro-1-(chlorométhyl) benzène conduit à l'intermédiaire **71** avec un rendement de 85%. A noter que nous avons également observé la formation d'un sous-produit **73** avec un rendement de 10%. L'alcénylation régiosélective en position 3 de **71** avec l'acrylate de méthyle dans nos

<sup>&</sup>lt;sup>228</sup> G. I. Georg, J. S. Tash, R. Chakrasali, S. R. Jakkaraj. U.S. Patent WO 2006/023704, 2006. *Chem.Abstr.* **2006**, 144, 274268.

conditions de réaction optimisées a donné le composé **75** avec un rendement de 65%. Enfin, le traitement de ce dernier par LiOH,H<sub>2</sub>O dans un mélange THF / MeOH conduit au produit désiré **77** avec un rendement de 87% (rendement global 50%). Par la suite, nous avons appliqué cette séquence pour la préparation du produit souhaité, en l'occurrence le Gamendazole **78**. La synthèse s'avère quasiment similaire puisque nous avons obtenu les deux isomères **72** et **74** avec des rendements respectivement de 87% et 11%, ensuite l'alcénylation en position 3 du produit **72** avec toujours l'acrylate de méthyle a permis l'obtention du composé **76** avec un rendement de 69%. Enfin l'hydrolyse dans les mêmes conditions permettant d'atteindre le produit biologiquement actif **78** avec un rendement de 91% pour un rendement global de 56% (schéma 124).

Schéma 124

#### **IX.** Conclusion

En conclusion, nous avons développé la première alcénylation oxydative régiosélective en C3 des (1*H*)- et (2*H*)-indazoles<sup>229</sup>. Nous avons également appliqué les conditions de la réaction à l'alcénylation directe en position 7 des 3-phényl-1*H*-indazoles possédant des

<sup>&</sup>lt;sup>229</sup> M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, *Org. Lett.*, **2015**, *17*, 4320.

Chapitre V : Alcénylations directes en positions 3 et 7 d'indazoles *N*-méthylés en position 1 ou 2 *via* des réactions catalysées par le palladium. Application à la synthèse du « Gamendazole »

groupes éléctro-attracteurs sur le noyau benzénique. Ce dernier résultat constitue le premier exemple d'alcénylation directe régiosélective des cycles à six chaînons dans les systèmes hétérocycliques 6,5 ne possédant pas de groupes orienteurs. De plus, nous avons justifié l'utilité de notre méthode par son application à la synthèse d'un candidat médicament, le Gamendazole, en utilisant seulement trois étapes au lieu des neufs étapes décrites dans la littérature avec un rendement global nettement supérieur à celui enregistré avec les méthodes préalablement décrites.



# CHAPITRE VI Synthèse de nouveaux dérivés d'indazoles possédant un motif sulfonamide

#### I. Introduction

Les sulfonamides constituent une grande famille de composés présentant des activités biologiques intéressantes. Plusieurs de ces molécules sont utilisées, certes, en chimiothérapie et dans le traitement des maladies infectieuses mais également comme hypoglycémiants, diurétiques voire anti-hypertenseurs. <sup>230,231</sup> Une nouvelle génération de sulfonamides, synthétisés montre des activités antitumorales importantes *in vivo*. <sup>232,233,234,235,236,237,238</sup> Ces dérivés présentent une grande variété de mécanismes pour exprimer leur action antitumorale, tels que l'inhibition de la polymérisation de la tubuline, la perturbation du cycle cellulaire en phase G1, l'inhibition de l'anhydrase carbonique, la suppression fonctionnelle de l'activateur du facteur nucléaire-Y (NF-Y) (figure 27). <sup>232-238</sup> Parmi les sulfonamides choisis après criblage d'une bibliothèque de composés, nous pouvons citer le dérivé indolique I: E7070 [*N*-(3-chloro-7-indolyl)-1,4-benzene disulfonamide)] <sup>239,240,241,242,243,244,245</sup> qui présente une bonne activité antiproliférative *in vivo* contre des tumeurs humaines et des tumeurs murines tels que les carcinomes du côlon HCT116, LS174T, SW620, HCT15 et les carcinomes du poumon LX-1, PC 9 (figure 26).

\_

<sup>&</sup>lt;sup>230</sup> N. Anand. Sulfonamides and Sulfoness. In *Burger's Medicinal Chemistry and Drug Discovery*, *Therapeutic Agents*, 5<sup>th</sup> ed.; Wolff, M. E., Ed.; J. Wiley & Sons: New York, **1996**, 2, 527.

A. Scozzafava, T. Owa, A. Mastrolorenzo, C. T. Supuran, Curr. Med. Chem., 2003, 10, 925.

<sup>&</sup>lt;sup>232</sup> C. T. Supuran, A. Scozzafava, A. Casini, *Med. Res. Rev.*, **2003**, *23*, 146.

<sup>&</sup>lt;sup>233</sup> A. Casini, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, *Curr. Cancer Drug Targets*, **2002**, 2, 55.

<sup>&</sup>lt;sup>234</sup> T. Owa, T. Nagasu, Exp. Opin. Ther. Pat., **2000**, 10, 1725.

<sup>&</sup>lt;sup>235</sup> C. T. Supuran, A. Scozzafava, Exp. Opin. Ther. Pat., **2002**, 12, 217.

<sup>&</sup>lt;sup>236</sup> C. T. Supuran, A. Scozzafava, Curr. Med. Chem. Imm., Endoc. Metab. Agents, 2001, 1, 61.

<sup>&</sup>lt;sup>237</sup> C. T. Supuran, A. Scozzafava, Exp. Opin. Ther. Pat. **2000**, 10, 575.

<sup>&</sup>lt;sup>238</sup> T. Owa, H. Yoshino, T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T. Nagasu, N. Koyanagi, K. Kitoh, *J. Med. Chem.* **1999**, *42*, 3789.

<sup>&</sup>lt;sup>239</sup> T. Owa, T. Okauchi, K. Yoshimatsu, N. H. Sugi, Y. Ozawa, T. Nagasu, N. Koyanagi, T. Okabe, K. Kitoh, H. Yoshino, *Bioorg. Med. Chem. Lett.*, **2000**, *10*, 1223.

<sup>&</sup>lt;sup>240</sup> H. Yoshino, N. Ueda, J. Nijima, H. Sugumi, Y. Kotake, N. Koyanagi, K. Yoshimatsu, M. Asada, T. Watanabe, T. Nagasu, K. Tsukahara, A. Iijima, K. Kitoh, *J. Med. Chem.*, **1992**, *35*, 2496.

<sup>&</sup>lt;sup>241</sup> T. Owa, H. Yoshino, K. Yoshimatsu, T. Nagasu, *Curr. Med. Chem.*, **2001**, 8, 1487.

<sup>&</sup>lt;sup>242</sup> T. Watanabe, N. Sugi, Y. Ozawa, T. Owa, T. Nagasu, K N. yanagi, K. Kitoh, K. Yoshimatsu, *Proc. Am. Assoc. Cancer Res.*, *Washington, DC*, **1996**, *37*, 391 (abstr.2667).

<sup>&</sup>lt;sup>243</sup> Y. Funahashi, N. H. Sugi, T. Semba, Y. Yamamoto, S. Hamaoka, T. N. Tsukahara, Y. Ozawa, A. Tsuruoka, K. Nara, K. Takahashi, T. Okabe, J. Kamata, T. Owa, N. Ueda, T. Haneda, M. Yonaga, K. Yoshimatsu, T. Wakabayashi, *Cancer Res.*, **2002**, *62*, 6116.

Y. Ozawa, N. H. Sugi, T. Nagasu, T. Owa, T. Watanabe, N. Koyanagi, H. Yoshino, K. Kitoh, K. Yoshimatsu, Eur, J. Cancer, 2001, 37, 2275.

<sup>&</sup>lt;sup>245</sup> C. Terret, S. Zanetta, H. Roché, J. H. M. Schellens, M. N. Faber, J. Wanders, M. Ravic, J. P. Droz, *Eur. J. Cancer*, **2003**, *39*, 1097.

Figure 26

Les tests pharmacologiques effectués sur différents N-(7-indolyl)-arylsulfonamides ont montré que les composés possédant la meilleure activité cytotoxique sont ceux qui comportent un atome de chlore en position 3 de l'indole et un groupement  $SO_2NH_2$  ou un substituant méthoxy en position 4 du motif benzènesulfonyle<sup>246</sup> (Figure 27).

Figure 27

Fort de ce constat, notre équipe et d'autres avons décidé de préparer des synthons à structure indazolique contenant le motif sulfonamide et ce, dans le but de les tester sur diverses lignées cellulaires cancéreuses (Figure 28).

154

<sup>&</sup>lt;sup>246</sup> T. Owa, H. Yoshino, T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T. Nagasu, N. Koyanagi, K. Kitoh, *J. Med. Chem.* **1999**, *42*, 3789.

Figure 28

# II. Etat de la littérature concernant les dérivés d'indazoles substitués par des motifs sulfonamides

Concernant l'importance des sulfonamides à structure indazolique dans la synthèse de composés biologiquement actifs, nous pouvons citer les travaux de B. Hakan et de ses collaborateurs<sup>247</sup> qui ont proposé ce type de molécules en tant que modulateurs (agonistes, antagonistes, agonistes partiels voire antagonistes partiels) du récepteur des glucocorticoïdes (Figure 29).

$$\begin{bmatrix} O & R_1 & R_2 & R_4 & R_5 \\ O & R_3 & N & N \\ O & R_3 & N & N \\ \end{bmatrix}$$

Figure 29

En 2012, Procopiou et *al*.<sup>248</sup> ont rapporté la synthèse d'une nouvelle série d'indazoles contenant le motif sulfonamide en tant qu'antagonistes du récepteur de la chimiokine 4 (CCR4). La voie de synthèse décrite dans le schéma 125 commence par la réaction du 2-fluoro-6-méthoxybenzonitrile **L151** avec de l'hydrazine hydratée au reflux du 1-butanol. Le 3-amino-indazole résultant **L152** est protégée sur la position *N*1 par traitement avec le di-*tert*-butyle dicarbonate en présence de la triéthylamine et de 4-diméthylaminopyridine pour former **L153**. La réaction de **L153** avec un équivalent de chlorure de thiophènesulfonyle donne le produit aminoindazole mono-sulfonylé **L154**. Le traitement de **L154** avec un excès de chlorure de sulfonyle fournit le composé **L155**, qui est ensuite déprotégé avec l'acide trifluoroacétique pour générer **L156**. La réaction de Mitsunobu de **L156** appliquée à différents

<sup>&</sup>lt;sup>247</sup> B. Hakan, L. Matti, N. Stinabritt, T.Camilla. U.S. Patent WO 2008/079073, 2008, *Chem.Abstr.* **2008**, *149*, 104715.

<sup>&</sup>lt;sup>248</sup> P. A. Procopiou, A. J. Ford, R. H. Graves, D. A. Hall, S. T. Hodgson, Y. M.L. Lacroix, D. Needham, R. J. Slack, *Bioorg. Med. Chem. Lett.* **2012**, *22*, 2730.

alcools benzyliques permet d'obtenir les produits alkylés en N1 L157, accompagnés d'une faible quantité de leur isomère alkylé en N2. Ces derniers sont facilement éliminés par chromatographie sur gel de silice. Enfin l'hydrolyse partielle de L157 avec une solution aqueuse d'hydroxyde de sodium dans le méthanol conduit aux molécules souhaitées L158.

#### Schéma 125

Notre groupe<sup>151,155</sup> dans un premier temps puis l'équipe de Rakib,<sup>249</sup> quelques années plus tard, ont décrit la synthèse d'indazoles di- et tri-substitués. Les sulfonamides indazoliques alkoxylés **L160**, et les dérivés **L161** ont été préparés de manière sélective avec du SnCl<sub>2</sub> en présence d'alcool ou de thioéther pour permettre la réduction de la fonction nitro et l'alkoxylation ou la thioalkylation. Les effets de l'halogène en position 3 et de la *N*-alkylation des nitroindazoles ont été étudiés (schéma 126).

156

<sup>&</sup>lt;sup>249</sup> a) N. Abbassi, E.M. Rakib, A. Hannioui, M. Alaoui, M. Benchidmi, E.M Essassi, D. Geffken, *Heterocycles*. **2011**, 83, 891. b) N. Abbassi, E. M. Rakib, L. Bouissane, A. Hannioui, M. Khouili, A. El Malki, M. Benchidmi, E. M. Essassi, *Synth. Commun.* **2011**, 41, 999. c) N. Abbassi, E. M. Rakib, H. Chicha, L. Bouissane, A, Hannioui, C. Aiello, R. Gangemi, P. Castagnola, C. Rosano, M. Viale, *Arch. Pharm. Chem. Life Sci.* **2014**, 347, 423. d) N. Abbassi, H. Chicha, E. M Rakib, A. Hannioui, M. Alaoui, A. Hajjaji, D. Geffken, C. Aiello, R. Gangemi, C. Rosano, M. Viale, *Eur. J. Med. Chem.* **2012**, 57, 240. e) A. Kouakou, H. Chicha, E. M. Rakib, A. Gamouh, A. Hannioui, M. Chigr, M. Viale, *J. Sulfur Chem.* **2015**, 36, 86.

#### Schéma 126

Comme nous l'avons déjà mentionné dans le chapitre 2, de nouveaux dérivés indazoliques possédant un groupement sulfonamide en position 7, ont déjà été développés au sein de notre laboratoire. Les composés sont dotés de cytotoxicités significatives *in vitro* (figure 30) tant vis-à-vis de diverses lignées cellulaires cancéreuses humaines (cancers du côlon et de la prostate) que de cellules cancéreuses murines (leucémie)

Figure 30 : Indazole possédant une activité anti-proliférative significative sur la lignée cellulaire murine L1210

# III. Synthèse de N-(indazolyl)-arylsulfonamides différemment substitués

## III.1 Préparation des produits de départ

La synthèse des *N*-(indazolyl)-arylsulfonamides substitués en position 3 de l'indazole par des groupements acryliques ou un atome d'halogène nécessite comme première étape la préparation des 3-halogéno- et 3-acryl-nitroindazoles à partir des nitroindazoles.

Dans un premier temps, les nitroindazoles sont traités par de l'hypochlorite de sodium en présence d'hydroxyde de sodium à reflux du méthanol ce qui permet d'accéder aux 3-chloro-nitroindazoles **79-81** avec d'excellents rendements (schéma 127).

#### Schéma 127

Dans un deuxième temps, nous avons décidé de méthyler les produits **79-82** en utilisant la méthode déjà décrite dans le chapitre 4, à savoir 2.0 équivalents d'hydrure de sodium, 1 équivalent d'iodométhane dans du DMF à 0°C puis agitation à température ambiante entre 4 à 24 heures (schéma 128).

#### Schéma 128

Par la suite, nous avons décidé d'appliquer notre protocole d'alcénylation directe en introduisant des motifs acryliques en position 3, afin de pouvoir étudier l'influence de ces groupements sur l'activité antitumorale.

Pour ce faire, nous avons appliqué les mêmes conditions que celles utilisées lors de la réaction d'alcénylation oxydative du composé **86**. Au cours de ce travail, nous avons utilisé différents dérivés acryliques, à savoir l'acrylate de méthyle, l'acrylate de 2,2,2-trifluoroéthyle et le *N-tert*-butylacrylamide, cette séquence permettant d'obtenir les produits souhaités avec de bons rendements (schéma 129).

Schéma 129

#### III.2 Synthèse des N-(indazolyl)-4-méthoxy-benzénesulfonamides

Dans la continuité de nos travaux de recherche sur le noyau indazole, avec pour but l'élaboration de composés à structure indazolique contenant le motif sulfonamide, nous avons engagé le 3-chloro-1-méthyl-5-nitroindazole **84** dans une séquence de deux étapes conduite « one pot », cette séquence mettant en jeu la réduction catalytique du composé **84** par hydrogénation en présence de palladium sur charbon dans le méthanol suivie du couplage de l'amine générée avec le chlorure de 4-méthoxybenzènesulfonyle dans la pyridine (schéma 135). A noter que les aminoindazoles obtenus par réduction des dérivés nitrés sont instables (la fonction amine s'oxydant facilement à l'air libre). De ce fait, ils sont engagés immédiatement dans la réaction de couplage. Le produit désiré **90** et le composé déshalogéné **91** sont obtenus avec des rendements de respectivement 48% et 31% (tableau 23).

#### Schéma 130

Par la suite, notre choix s'est porté sur l'utilisation des conditions de Bellamy<sup>250-251</sup> à savoir, la réduction du 5-nitroindazole **84** avec le chlorure d'étain anhydre dans l'éthanol, suivie du couplage de l'amine correspondante avec le chlorure du 4-méthoxybenzène sulfonyle. Dans ce cas, nous avons obtenu un mélange de deux produits : le *N*-(4-éthoxy-5-

<sup>&</sup>lt;sup>250</sup> F. D. Bellamy, K. Ou, *Tetrahedron Lett.*, **1984**, 25, 839.

<sup>&</sup>lt;sup>251</sup> G. L. Grunewald, V. M. Paradkar, B. Pazhenchevsky, M. A. Pleiss, D. J. Sall, W. L. Seibel, T. J. Reitz, *J. Org. Chem.*, **1983**, *48*, 2321.

indazoyl)-4-méthoxybenzènesulfonamide **92** et le sulfonamide non substitué **90** (schéma 9), les deux composés étant obtenus avec des rendements respectifs de 28 et 43% (tableau 23).

#### Schéma 131

La possibilité d'isoler les dérivés éthoxylés, lors de la réduction par SnCl<sub>2</sub>, en solution alcoolique tel que l'éthanol, a été observée pour la première fois dans notre laboratoire en 2005. <sup>252</sup> Dans les articles publiés à ce sujet, nous avons proposé un mécanisme plausible. <sup>253</sup>

La réduction des composés nitrés aromatiques avec des métaux soit dans des solvants protiques tels que les alcools, l'acide acétique, l'eau ou dans un acide minéral aqueux, est généralement supposée procéder *via* une hydroxylamine intermédiaire protonée.<sup>254</sup> Par conséquent, nous supposons que l'attaque nucléophile de l'éthanol présent dans le mélange de réaction se produit par le doublet libre d'oxygène (schéma 132).

$$\begin{array}{c} C_1 \\ C_2 \\ N \end{array} \xrightarrow{SnCl_2/C_2H_5OH} \begin{array}{c} C_1 \\ N \\ N \end{array} \xrightarrow{H_2N} \begin{array}{c} C_1 \\ N \\ N \end{array} \xrightarrow{H_2N} \begin{array}{c} C_1 \\ N \\ N \end{array} \xrightarrow{H_2N} \begin{array}{c} C_1 \\ N \\ N \end{array}$$

#### Schéma 132

Pour empêcher cette réaction secondaire d'alkoxylation de se former et afin de préparer des sulfonamides halogénés, déshalogénés (schéma 133), voire fonctionnalisés par un dérivé carbonylé toujours en position 3 du cycle indazole (schéma 134), nous avons appliqué aux composés **83, 85** et **87-89** les conditions de réduction précédemment mises en œuvre (schéma

<sup>&</sup>lt;sup>252</sup> L. Bouissane, S. El Kazzouli, M. E. Rakib, M. Khouili, J.-M. Leger, C. Jarry, G. Guillaumet, *Tetrahedron* **2005**, 61, 8218

<sup>&</sup>lt;sup>253</sup> I.-C. Grig-Alexa, I. Simionescu, O.-I. Patriciu, S. Massip, A.-L. Finaru, C. Jarry, J.-M. Leger, G. Guillaumet, *Tetrahedron Lett.* **2012**, *53*, 1885.

130) à savoir l'hydrogénation en présence de palladium sur charbon (schéma 133). Les sulfonamides sont alors isolés avec de bons rendements (tableau 23).

#### Schéma 133

Notre choix s'est également porté sur le 7-nitroindazole, dans la mesure où nous l'avons déjà mentionné, les composés possédant des sulfonamides sur cette position présentent un profil antitumoral encourageant. Il est à noter que l'hydrogénation a permis de réduire le groupe nitro et la double liaison en même temps.

EWG

1) 
$$H_2$$
,  $Pd/C$ ,  $MeOH$ ,  $60 \, ^{\circ}C$ 

2)  $p$ - $MeOC_6H_4SO_2CI$ 

Pyridine

EWG =  $-CO_2Me$ 

EWG =  $-CO_2CH_2CF_3$ 

EWG =  $-CO_1CH_2CF_3$ 

EWG

OMe

Schéma 134

Tableau 23: Généralisation

| Entrée | Produit de départ | Produit | Rdt (%) <sup>a</sup> |
|--------|-------------------|---------|----------------------|
|        |                   |         |                      |
|        |                   | S N CI  |                      |
| 1      | 84                | O" O N  | 48                   |
|        |                   | 90      |                      |

# Chapitre VI: Synthèse de nouveaux dérivés d'indazoles possédant un motif sulfonamide

Chapitre VI: Synthèse de nouveaux dérivés d'indazoles possédant un motif sulfonamide

Toujours dans le but de préparer de nouveaux sulfonamides *N*-méthylés à propriétés pharmacologiques potentielles, nous avons pensé hydrolyser le composé **97** afin de générer l'acide carboxylique correspondant. Pour ce faire, nous avons fait appel aux conditions précédemment décrites pour la synthèse du Gamendazole, conditions qui consistent à utiliser LiOH.H<sub>2</sub>O dans un mélange de THF et de MeOH, ce qui permet d'accéder au composé **100** souhaité avec un rendement de 87% (schéma 135).

<sup>&</sup>lt;sup>a</sup> Rendement en produit isolé après purification sur colonne de silice.

Chapitre VI: Synthèse de nouveaux dérivés d'indazoles possédant un motif sulfonamide

Schéma 135

#### III-3 Résultats pharmacologiques

Ces composés font l'objet de tests biologiques réalisés par l'équipe du professeur Richard Daniellou à l'ICOA (Université d'Orléans). Dans ce cadre, ils seront testés *in vitro* sur des cellules tumorales de la lignée cellulaire murine L1210 et sur les lignées cellulaires tumorales humaines DU145 (carcinome prostatique), HCT116 (carcinome du côlon) et HT29 (adénocarcinome du côlon).

#### **IV. Conclusion**

Nous avons synthétisé une nouvelle série de *N*-(indazolyl)-arylsulfonamides à partir des nitroindazoles correspondants. Pour accéder à ces composés, nous avons mis au point différentes stratégies permettant la fonctionnalisation régiosélective en positions 1, 3 et 4 des nitroindazoles. Ces stratégies font appel à des réactions de réduction catalytique de sulfonation, d'halogénation, de méthylation et à des réactions d'alcénylations catalysées par le palladium.

Tous ces composés seront testés sur des lignées cellulaires tumorales murines (L1210), et humaines (DU145, HCT116 et HT29) afin d'évaluer leurs potentielles propriétés pharmacologiques.

Conclusion générale et Perspectives

Conclusion Générale et Perspectives

#### Conclusion générale et Perspectives

Dans ce travail nous avons mis à profit de nouvelles méthodes de synthèse permettant d'accéder à différents dérivés d'indazoles diversement fonctionnalisés.

Pour atteindre le but fixé, diverses approches ont été mises en œuvre.

Ainsi, nous nous sommes concentrés dans un premier temps sur le développement de nouvelles stratégies rapides et efficaces basées sur l'utilisation de réactions palladocatalysées, de type Suzuki-Miyaura, pour fonctionnaliser la position 3 des indazoles ne possédant pas de substituant sur l'azote *NI*. Dans un deuxième temps, l'utilisation de l'irradiation micro-ondes pour le chauffage du milieu réactionnel a permis d'effectuer une synthèse beaucoup plus rapide et efficace (schéma 136).

Nous avons également étudié une nouvelle voie de synthèse *via* une réaction d'arylation et d'hétéroarylation directe catalysée par le palladium en position 3 d'indazoles *N*-substitués (schéma 136).

Par la suite, nous avons repris et étendu la réaction d'arylation catalysée par le palladium menée sur des indazoles substitués. Nous avons ainsi développé le premier exemple d'arylation directe régiosélective en C7 d'1*H*-indazoles déjà substitués en position 3 et contenant des groupes éléctro-attracteurs sur le noyau benzénique. Les conditions mises au point ont permis la préparation de divers dérivés d'indazoles arylés en C7. Nous avons ensuite étendu notre étude à la synthèse de molécules indazoliques disubstituées et ce, en une seule étape, *via* une séquence «one pot» regroupant: « un couplage de Suzuki-Miyaura et une arylation directe » (schéma 136).

Gill N Arylation directe en C7 Couplage de Suzuki 
$$R_1 = H$$
,  $R_2 = Br$   $R_1$   $R_2 = Ph$ ,  $R_1$   $R_2 = Ph$ ,  $R_3$   $R_3$   $R_4$   $R_5$   $R_5$   $R_5$   $R_6$   $R_7$   $R_8$   $R_8$   $R_8$   $R_9$   $R_9$ 

Schéma 136

Par ailleurs, et pour accroître la diversité autour du noyau indazole, nous avons élaboré une stratégie rapide, efficace, reproductible et facile de mise en œuvre autorisant l'alcénylation en position 3 des (2H)- et (1H)-indazoles, ainsi que cette même séquence sur le sommet 7 d'(1H)-indazoles. Cette méthode est basée sur une réaction d'alcénylation oxydative pallado-catalysée, permettant l'élaboration de la liaison carbone sp<sup>2</sup> - carbone sp<sup>2</sup>.

Nous avons appliqué avec succès cette stratégie aux indazoles *N*-méthylés. Grâce à ces conditions, de nombreux dérivés à noyau indazole alcènylé sur les sommets C-3 et C-7 ont pu être synthétisés (schéma 137).

Schéma 137

Pour exemplifier le travail, nous avons réussi à développer une synthèse en trois étapes du Gamendazole, composé actuellement en phase clinique pour la contraception masculine et ce, en utilisant l'alcénylation directe en C3 d'(1*H*)-indazoles convenablement fonctionnalisés (figure 31).

Figure 31

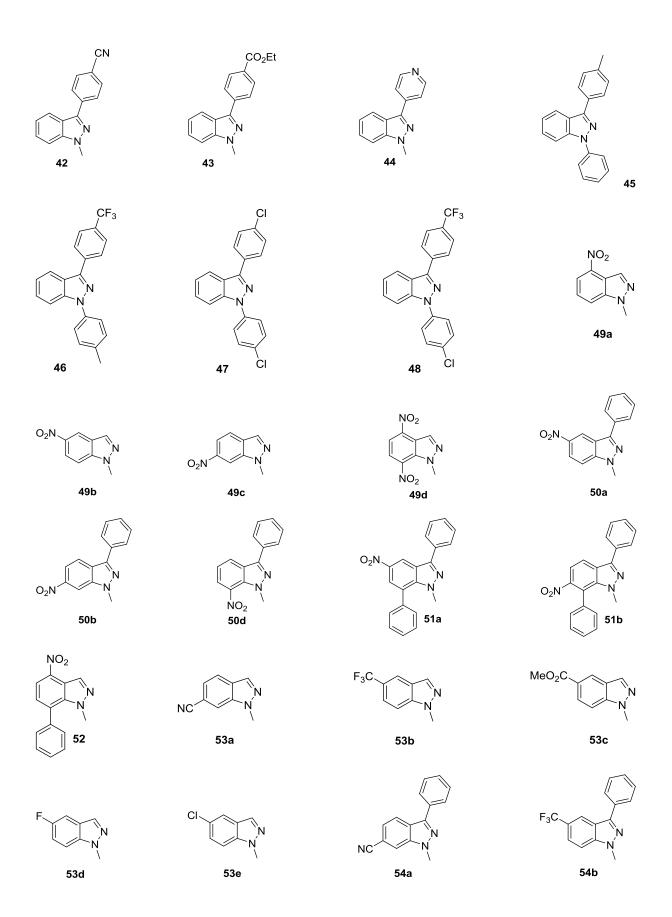
La dernière partie de ce mémoire concerne le développement de synthons à structure indazolique possédant le motif sulfonamide avec pour cible la génération de librairies d'indazolylsulfonamides potentiellement intéressants biologiquement dans le domaine des anticancéreux (figure 32).

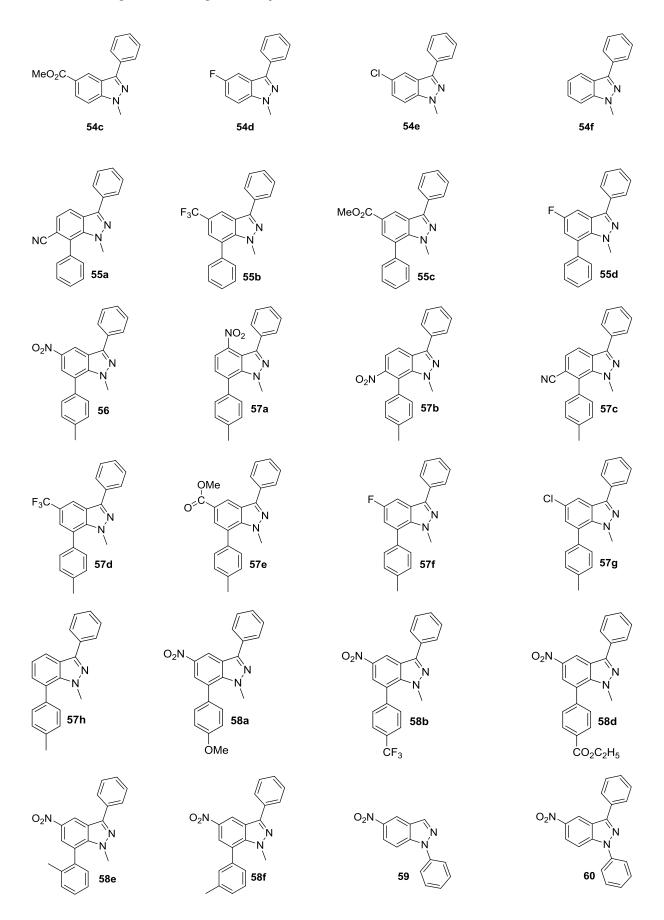
$$\begin{array}{c|c}
OMe \\
O_2N & \\
N \\
H
\end{array}$$

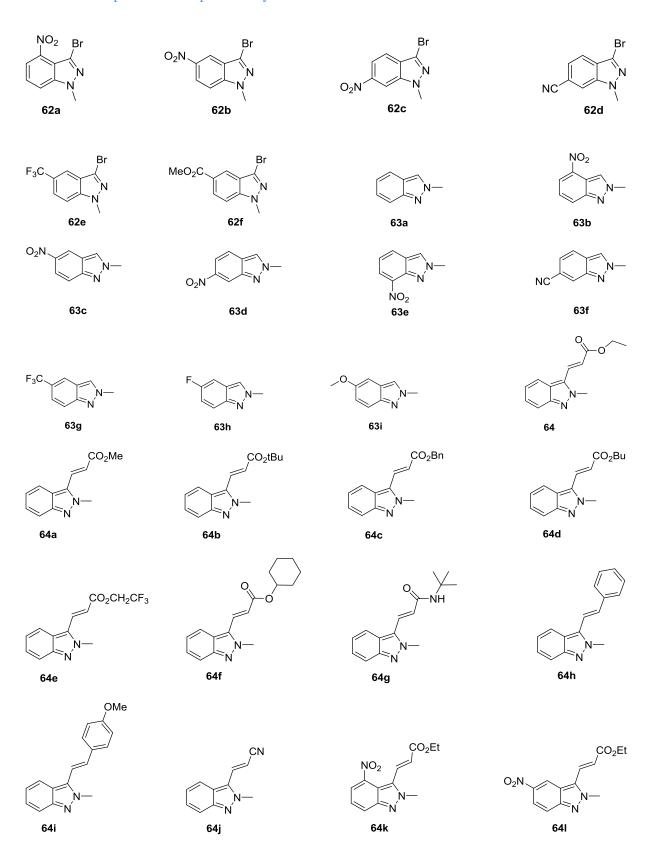
Figure 32

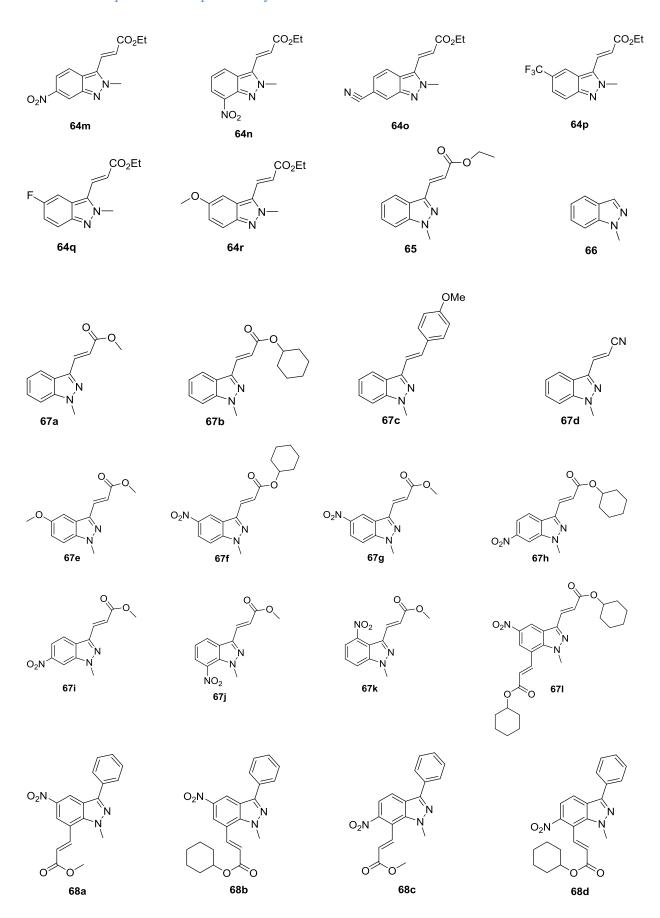
Les objectifs que nous nous étions fixés ont été remplis puisque nous avons réussi à synthétiser, de manière satisfaisante, les molécules que nous projetions d'élaborer.

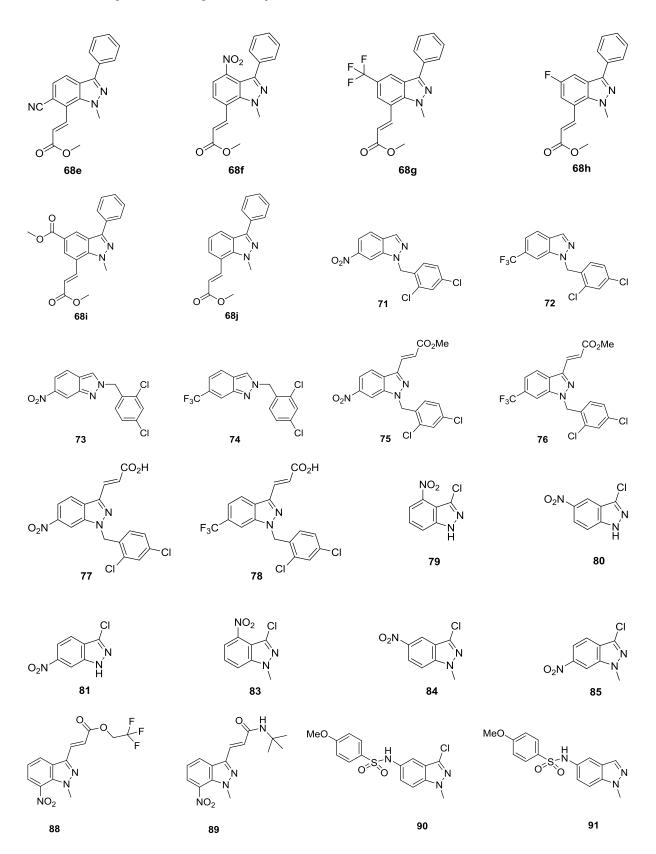
Au niveau perspectives, nous souhaitons axer nos futurs travaux vers l'élaboration de nouveaux dérivés indazoliques susceptibles de donner lieu à des cyclisations intramoléculaires permettant ainsi d'accéder à des composés polyhétérocycliques (schéma 138).


Schéma 138


De plus, pour mieux élucider le mécanisme d'arylation en position 7, nous envisageons des travaux de modélisation moléculaire concernant l'étude de ce mécanisme, des calculs DFT devant nous permettre de connaître les énergies d'activation et les barrières énergétiques des différents états de transition possibles.


D'autres alternatives sont actuellement en cours de développement au sein de notre laboratoire, avec, en particulier, l'adaptation de ces méthodologies à d'autres systèmes hétérocycliques (figure 33), ces séquences pouvant être mises en œuvre pour élaborer diverses charpentes polyhétérocycliques dotées d'activités pharmacologiques potentielles.


$$R_2 \stackrel{Z}{\stackrel{\vee}{Y}} \stackrel{N}{\underset{R_1}{\bigvee}}$$


Figure 33











Partie expérimentale

Partie expérimentale

# Méthodes générales

#### Purification des solvants :

Les solvants anhydres sont de qualité HPLC et ne sont pas distillés sauf pour le dichlorométhane et le toluène qui sont distillés sur hydrure de calcium et le DMF est conservé sur tamis moléculaire 3 Å.

#### Purifications des produits :

L'évolution des réactions est suivie par chromatographie sur couche mince (CCM), sur des feuilles d'aluminium recouvertes de gel de silice Merck 60 F254 (épaisseur 0,2 mm). La révélation est réalisée sous lampe à ultra-violet à 254 et 365 nm puis par une solution de permanganate de potassium, de vanilline ou de *p*-anisaldéhyde avec chauffage.

Les purifications par chromatographie sur colonne sont effectuées sur gel de silice Merck 40-70 µm (230-400 mesh) sous pression d'air comprimé.

#### Techniques d'analyses et appareillages :

Les expériences sous irradiation micro-ondes sont effectuées sur un appareil Biotage InitiatorTM, la température étant mesurée par une sonde infrarouge.

Les points de fusions (**F**) sont mesurés dans un tube capillaire au moyen d'un appareil Buchï SMP-20 et ne sont pas corrigés.

Les spectres infra-rouge (**IR**) sont enregistrés sur un spectromètre Thermo Scientific Nicolet iS10. Il s'agit d'un ATR (Réflexion Totale Atténuée) doté d'un cristal en germanium. L'échantillon est directement déposé sur le germanium et comprimé avant l'enregistrement du spectre. La longueur d'onde des bandes caractéristiques est exprimée en cm<sup>-1</sup>.

Les spectres de masse (**SM**) sont réalisés sur un spectromètre Perkin-Elmer SCIEX de type API 300, Les échantillons sont préalablement solubilisés dans le CH<sub>2</sub>Cl<sub>2</sub> ou le MeOH puis ionisés par la technique d' « ionspray » (IS), en mode positif.

#### Partie expérimentale

Les spectres de masse à haute résolution (**HRMS**) sont réalisés sur un spectromètre de masse de type Burker maXis au sein de plateforme « fédération de recherche » entre l'ICOA et le CBM.

Les spectres de résonance magnétique nucléaire (**RMN**) sont réalisés sur un appareil Bruker Advance DPX250 (250 MHz pour le <sup>1</sup>**H** et 62,9 MHz pour le <sup>13</sup>**C**) ou de type Bruker Advance 400 (400 MHz pour le <sup>1</sup>**H** et 100,6 MHz pour le <sup>13</sup>**C**).

Les déplacements chimiques  $(\delta)$  sont mesurés en partie par million (ppm) par rapport aux références internes appropriées à chaque type de solvant:

#### ➤ Pour le proton:

- ❖ Le tétraméthylsilane est pris comme référence interne pour les spectres effectués dans le chloroforme deutérié (CDCl₃).
- ❖ Signal du solvant résiduel (2,50 ppm) dans le DMSO-d<sub>6</sub>.
  - ➤ Pour le carbone:
- ❖ CDCl<sub>3</sub> (raie centrale à 77,16 ppm).
- ❖ DMSO-d<sub>6</sub> (raie centrale à 39,52 ppm).

Les constantes de couplages (J) sont exprimées en hertz (Hz) et la multiplicité est représentée de manière suivante: singulet (s), doublet (d), doublet dédoublé (dd), triplet (t), triplet dédoublé (td), quadruplet (q), multiplet (m).

Les points de fusions (**F**) sont mesurés dans un tube capillaire au moyen d'un appareil Buchï SMP-20 et ne sont pas corrigés.

Le suivi des réactions est réalisé par chromatographie sur couche mince (CCM) sur des feuilles d'aluminium couvertes de gel de silice Merck 60 F254 (épaisseur 0,2 mm). La révélation a été réalisée sous lampes ultra-violet à 254 nm.

Les purifications par chromatographie sur colonne sont effectuées sur gel de silice Merck 40-70 mM (230- 400 mesh).

## General procedure A: Methylation of indazole.

KOH, 
$$CH_3I$$
Acètone,  $0 \, ^{\circ}C$ 
 $CH_3$ 

The indazole (1 g, 8.46 mmol) was dissolved in acetone (10 ml) at 0 °C in a 50 ml flask. KOH (1.4 g, 25.38 mmol) was added, and then CH<sub>3</sub>I (1.8 g, 12.69 mmol, 1.5 equiv.) was added dropwise. The reaction mixture was filtered and separated by flash chromatography on silica gel.

## General procedure B: Methylation of indazole.

Sodium hydride (55.0 mmol) was added to a solution of 1H-indazole (18.40 mmol) in N,N-dimethylformamide (50 ml), and the mixture was maintained for 60 min at 0 °C. Then, methyl iodide (22.12 mmol) was added and the reaction mixture. The reaction mixture was warmed to room temperature and this temperature maintained for 18 h. The reaction mixture was quenched with water (60 ml) and filtered through Celite, and the filtrate was concentrated. Purification by flash chromatography on silica gel led to the desired products. This procedure gave exclusively N-methylation at the N1 position.

# General procedure C: Bromination of indazole.

To a solution of nitroindazole (1g, 6.13 mmol), N-bromosuccinimide (1.2g, 6.74 mmol) in acetonitrile (10 mL) was heated at reflux for 1 hours. The solvent was removed in vacuo and the residue was taken up in 50 mL of ethyl acetate, washed with  $2 \times 100$  ml of water, 100 ml of 10% sodium thiosulfate, brine and then dried. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel.

## General procedure D: Suzuki-Miyaura cross-coupling reaction.

To a solution of 3-bromo-5-nitroindazole (0.1 g) dissolved in 1.5 ml of a mixture of 1,4-dioxane/EtOH/H<sub>2</sub>O (3/1/0.5, v/v/v) in a vial microwave tube with a stir bar, were added arylboronic acid (1.5 equiv), solution of cesium carbonate (1.3 equiv dissolved in 0.5 ml of H<sub>2</sub>O), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.1 equiv), under argon. The reaction vessel was sealed with a silicon septum and subjected to microwave irradiation at 140 °C with stirring. The reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate (15 ml) and water (10 ml), and extracted (3 times). The combined organic layer was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (EtOAc/Ether) to give the desired final product.

## General procedure E: N-arylation of indazole.

In a microwave tube with stirring, 1g (8.46 mmol) of the indazole was dissolved in 10 ml of N-methyl pyrrolidinone (NMP), and then CuI (160 mg, 0.84 mmol), bipyridine (262.4 mg, 1.68 mmol), K<sub>2</sub>CO<sub>3</sub> (1.75 g 12.69 mmol) and aryl iodides (10.15 mmol) were added to the reaction mixture. The reaction mixture was sealed with a silicon septum and subjected to microwave irradiation at 200 °C with stirring for 45 min. The reaction mixture was diluted with ethyl acetate and extracted (3 times). The organic phase was dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (Ether/CH<sub>2</sub>Cl<sub>2</sub>).

### General procedure F: C3-arylation.

In a flask of 10 ml, a solution of phenanthroline (57 mg, 0.31 mmol) in DMA (5 ml) was degassed by bubbling argon, and then palladium acetate (31 mg, 0.14 mmol) was added. The solution was stirred at room temperature for 3 min then  $K_2CO_3$  (290 mg, 2.1 mmol), 1-methylindazole (92.5 mg, 0.7 mmol) and aryl iodides (0.9 mmol) were successively added. The reaction mixture was refluxed under argon for 48 hours, then, after cooling it was filtered through celite and the organic layer was extracted three times with ethyl acetate, dried over magnesium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel.

## **General Procedure G: C7-Arylation.**

$$R_{\frac{|I|}{|I|}} = R_{1}$$

$$R_{2}-I = \frac{Pd(OAc)_{2}, 1,10-Phenanthroline}{K_{2}CO_{3}, K_{3}PO_{4}, DMA, reflux}$$

$$R_{2} = \frac{R_{1}}{|I|}$$

$$R_{2} = \frac{R_{1}}{|I|}$$

In a 10 mL flask, a solution of phenanthroline (57 mg, 0.31 mmol, 0.4 equiv) in DMA (2 ml) was degassed by bubbling argon, and then palladium acetate (0.14 mmol, 31 mg, 0.2 equiv) was added. The solution was stirred at room temperature for 3 min, and then K<sub>2</sub>CO<sub>3</sub> (2.1 mmol, 290 mg, 3 equiv), K<sub>3</sub>PO<sub>4</sub> (1.3 mmol, 297 mg, 2 equiv), 1-methylindazole (96 mg, 0.7 mmol), and 4-iodotoluene (0.9 mmol, 1 equiv) were successively added. The reaction mixtures were refluxed under argon for 24 h. After it was cooled, the mixture was filtered through Celite and the organic phase was extracted three times with ethyl acetate, dried over magnesium sulfate, and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel.

## General protocol H: One-pot C3-Suzuki/ C7-arylation.

$$R = \begin{bmatrix} Ph-B(OH)_2, Pd(OAc)_2 \\ PPh_3, K_2CO_3, DMA \\ reflux, 24h \\ \hline Then R_1-I \\ 1,10-Phen., reflux, 24h \\ R_1 \end{bmatrix}$$

A flask containing a stirring bar was charged with 3-bromoindazoles, phenyl boronic acid (1.5 equiv.),  $K_2CO_3$  (1.5 equiv.),  $K_3PO_4$  (1.5 equiv.) and  $PPh_3$  (0.2 equiv.) in DMA (2 ml). The flask was degassed and back-filled with dry argon twice.  $Pd(OAc)_2$  (0.1 equiv.) was added. After refluxing for 24 hours, phenanthroline (0.4 equiv.) and 4-iodotoluene (1 equiv.) were added, then, the reaction mixture was continuously refluxed under argon for 24 hours. After cooling the mixture was filtered through celite and the organic phase was extracted three times with ethyl acetate, dried over magnesium sulfate and then concentrated under reduced pressure, the residue was purified by flash chromatography to provide the desired products.

## General Procedure I: synthesis of 2-methyl-2*H*-indazole.

$$\begin{array}{c|c}
R \stackrel{\text{II}}{ \downarrow \downarrow} & N & \xrightarrow{\text{Me}_3^+ BF_4^-} & R \stackrel{\text{N}}{ \downarrow} & N \\
\hline
\text{EtOAc} & \text{rt. 5h} & 
\end{array}$$

To a stirred mixture of the indazole (163 mg, 1 mmol) in EtOAc (3 ml) was added trimethyloxonium tetrafluoroborate (192 mg, 1.3 mmol). The mixture was stirred at room temperature for 5 h under  $N_2$ . The reaction mixture was diluted with 20 ml of EtOAc and washed with 20 ml of saturated NaHCO<sub>3</sub> solution. The organic layer was separated, and the aqueous layer was extracted with EtOAc (20 ml  $\times$  2). The combined organic layers were dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated. Purification of the product by column chromatography (1:1 EtOAc/ Petroleum ether) gave the desired products.

## General procedure J: C3 and C7-alkenylation.

2-methyl-indazole (0.5 mmol), ethyl acrylate (1.5 mmol), 5 mol % Pd(OAc)<sub>2</sub>, Ag<sub>2</sub>CO<sub>3</sub> (1.25 mmol, 2.5 equiv), AcOH (0.5 mol) and Ac<sub>2</sub>O (0.5 mol) were added in dioxane (2 ml) at room temperature, and then the mixture was stirred at 120 °C under argon for 18 to 48 hours. After cooling the mixture was filtered through celite and the organic phase was extracted three times with ethyl acetate, dried over magnesium sulfate and then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel.

## General procedure K: N-benzylation of indazole.

$$F_3C \xrightarrow{N} H \xrightarrow{CI} F_3C \xrightarrow{N} F_3C \xrightarrow$$

The indazole (1g, 5.37 mmol) was dissolved in N-methylpyrrolidinone (NMP; 10 ml), in a microwave tube with stirring, and then  $K_2CO_3$  (1.75 g, 12.69 mmol), and an aryl chloride (6.45 mmol) were added to the reaction mixture. The reaction mixture was sealed with a silicone septum and subjected to microwave irradiation at 200 °C with sitirring for 20 min. The reaction mixture was diluted with ethyl acetate and extracted three times with ethyl acetate. The organic phase was dried with  $MgSO_4$  and concentrated under reduced pressure. The product was purified by column chromatography on silica gel.

## General Procedure L: Synthesis of (2,4-dichlorobenzyl-1H-indazol-3-yl) acrylic acid "Gamendazole".

$$F_{3}C$$

$$O_{2}Me$$

$$CO_{2}Me$$

$$C$$

(2,4-dichlorobenzyl-1H-indazol-3-yl) acrylic acid methyl ester (2.33 mmol) was dissolved in a mixture of tetrahydrofuran (20 ml) and methanol (10 ml). A lithium hydroxide solution (0.31 g, 0.0073 mol lithium hydroxide mono hydrate in 2.5 ml water) was added slowly at room temperature and stirred for 4h. The reaction mixture was diluted with water and extracted with ethyl acetate in order to remove neutral impurities. The layers were separated and the aqueous layer was cooled to 0 °C and then acidified with 20 % sulfuric acid to pH 2. White solid precipitated and were filtred and dried to constant weight. The crude product was recrystallized from ethyl acetate and petroleum ether (1:1) to afford the pure product.

# General Procedure M: Synthesis of N-(indazolyl)-arylsulfonamides

A mixture of 1-methyl-3-alkyl-nitroindazole (1.22 mmol) and anhydrous SnCl<sub>2</sub> (1.1 g, 6.1 mmol) in 25 ml of absolute EtOH was heated at 60 °C. After reduction, the starting material has disappeared and the solution is allowed to cool down. The pH was made slightly basic (pH 7-8) by addition of 5% aqueous potassium bicarbonate before being extracted with EtOAc. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methoxylbenzenesulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with EtOAc/Petroleum ether 2/8).

## General Procedure N: Synthesis of N-(indazolyl)-arylsulfonamides

A solution of 1-methyl-3-alkyl-nitroindazole (200 mg, 1.23 mmol) in MeOH (20 ml) was hydrogenated over 10% palladium on carbon (20 mg) under  $H_2$  at 1 atm during 2-24 h. After the catalyst was filtered off, the filtrate was evaporated to give almost pure aminoindazole. The crude amine was dissolved in acetone (5 ml) followed by the immediate addition of 4-

#### Partie expérimentale

methoxylbenzenesulfonyl chloride (408 mg, 1.67 mmol) and pyridine (5 ml). The reaction mixture was stirred at room temperature overnight. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with EtOAc/ Petroleum ether 2/8).

#### 3-Bromo-1*H*-indazole 13

Compound 13 is prepared according to the general procedure C. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (79%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 12.75 (s, 1H, NH), 7.70 (d, J = 8.8 Hz, 1 H, H<sub>7</sub>), 7.63 (d, J = 8.8 Hz, 1 H, H<sub>4</sub>), 7.44 (t, J = 6.8 Hz, 1 H, H<sub>6</sub>), 7.21 (t, J = 6.8 Hz, 1H, H<sub>5</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  141.14 (C), 128.15 (CH), 123.13 (C), 122.91 (CH), 121.85 (C), 120.24 (CH), 110.21 (CH).

IR v (neat, cm<sup>-1</sup>): 3437, 2915, 1623, 1329, 1241, 1024, 733.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>5</sub>BrN<sub>2</sub> [M+H] <sup>+</sup>: 196.9636, found 196.9642.

**Melting Point:** 124 °C.

#### 3-Bromo-4-nitro-1*H*-indazole 14

Compound **14** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (74%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>)** δ 8.00 (d, J = 7.8 Hz, 1H, **H**<sub>7</sub>), 7.91 (d, J = 7.8 Hz, 1H, **H**<sub>5</sub>), 7.61 (t, J = 7.8 Hz, 1H, **H**<sub>6</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 142.95 (C), 141.31 (C), 126.83 (CH), 118.62(CH), 117.37 (C), 117.22 (CH), 112.35 (C).

IR v (neat, cm<sup>-1</sup>): 3161, 2922, 1530, 1347, 1299, 1154, 1026, 998, 793, 730.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 241.9486, found 241.9488.

**Melting Point:** 228 °C.

#### 3-Bromo-5-nitro-1*H*-indazole 15

$$O_2N$$
 $\overbrace{ 0}^{4}$ 
 $O_2N$ 
 $O_$ 

Compound **15** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (76%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 8.45 (s, 1H, H<sub>4</sub>), 8.24 (dd, J = 8.8, 2.0 Hz, 1H, H<sub>6</sub>), 7.76 (d, J = 8.8 Hz, 1H, H<sub>7</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 142.91 (C), 142.22 (C), 123.64 (C), 122.23 (CH), 121.58 (C), 117.16 (CH), 112.17 (CH).

IR v (neat, cm<sup>-1</sup>): 3447, 3141, 2919, 1741, 1682, 1621, 1533, 1492, 1340, 1283, 1089, 787, 701.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 241.9486, found 241.9490.

**Melting Point:** 226 °C.

#### 3-Bromo-6-nitro-1*H*-indazole 16

Compound **16** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (73%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 14.07 (s, 1H, NH), 8.48 (s, 1H, H<sub>7</sub>), 8.01 (dd, J = 8.8, 2.0 Hz, 1H, H<sub>5</sub>), 7.83 (d, J = 8.8 Hz, 1H, H<sub>4</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 146.97 (C), 139.56 (C), 125.24 (C), 121.05 (CH), 120.83 (C), 115.91 (CH), 107.87 (CH).

IR v (neat, cm<sup>-1</sup>): 3349, 1591, 1526, 1339, 1019, 882, 786, 657.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 241.9486, found 241.9490.

**Melting Point:** 206 °C.

#### 3-Bromo-7-nitro-1*H*-indazole 17

Compound 17 is prepared according to the general procedure  $\mathbb{C}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (71%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 14.25 (s, 1H, NH), 8.45 (d, J = 7.9 Hz, 1H, H<sub>4</sub>), 8.13 (d, J = 7.9 Hz, 1H, H<sub>6</sub>), 7.46 (t, J = 7.9 Hz, 1H, H<sub>5</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 133.37 (C), 133.14 (C), 128.35 (CH), 126.18 (CH), 124.96 (CH), 123.18 (C), 121.33 (C).

IR v (neat, cm<sup>-1</sup>): 3180 (NH), 1620 (CN), 1500, 1310 (NO<sub>2</sub>).

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 241.9486, found 241.9489.

**Melting Point:** 177 °C.

#### 3-Bromo-5-methoxy-1*H*-indazole 18

Compound **18** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (77%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 10.42 (s, 1H, NH), 7.40 (d, J = 8.8 Hz, 1H, H<sub>7</sub>), 7.12 (d, J = 8.8 Hz, 1H, H<sub>6</sub>), 6.93 (s, 1H, H<sub>4</sub>), 3.89 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.49 (C), 136.86 (C), 123.47 (C), 122.08 (C), 120.82 (CH), 111.24 (CH), 98.76 (CH), 55.78 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3161, 2944, 1634, 1514, 1489, 1295, 1217, 1179, 1014, 823, 728.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 226.9583, found 226.9587.

**Melting Point:** 178 °C.

#### 3-(4-Methoxyphenyl)-5-nitro-1*H*-indazole 19

Compound 19 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (78%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>)** δ 13.76 (s, 1H, **NH**), 8.85 (d, J = 1.9 Hz, 1H, **H<sub>4</sub>**), 8.21 (dd, J = 1.9, 9.2 Hz, 1H, **H<sub>6</sub>**), 7.92 (d, J = 8.7 Hz, 2H, **H<sub>Ar</sub>**), 7.73 (d, J = 9.2 Hz, 1H, **H<sub>7</sub>**), 7.12 (d, J = 8.7 Hz, 2H, **H<sub>Ar</sub>**), 3.83 (s, 3H, OC**H<sub>3</sub>**).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 160.19 (C), 146.85 (C), 143.83 (C), 142.34 (C), 128.93 (2×CH), 125.17 (2×CH), 121.56 (C), 119.55 (C), 119.12 (CH), 115.18 (CH), 111.82 (CH), 55.76 (OCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3240 (NH), 1625, 1505, 1305, 1077, 826, 723.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{11}N_3O_3$  [M+H]  $^+$ : 270.0834, found 270.0783.

Melting Point: 146-148 °C.

#### Partie expérimentale

#### 5-Nitro-3-phenyl-1*H*-indazole 20

Compound 20 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (72%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 11.71 (s, 1H, **NH**), 9.00 (d, J = 1.6 Hz, 1H, **H<sub>4</sub>**), 8.29 (dd, J = 1.6, 9.2 Hz, 1H, **H<sub>6</sub>**), 7.99 (d, J = 7.0 Hz, 2H, **H<sub>Ar</sub>**), 7.64-7.55 (m, 3H, **H<sub>Ar</sub>**), 7.38 (d, J = 9.2 Hz, 1H, **H<sub>7</sub>**).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.72 (C), 143.48 (C), 142.97 (C), 131.76 (C), 129.47 (2×CH), 129.34 (C), 127.83 (2×CH), 122.21 (CH), 120.47 (CH), 119.26 (CH), 110.68 (CH).

IR v (neat, cm<sup>-1</sup>): 3201, 1350, 1068, 682.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_9N_3O_2$  [M+H]  $^+$ : 240.0728, found 240.0797.

Melting Point: 162-164 °C.

#### 5-Nitro-3-(4-(trifluoromethyl)phenyl)-1*H*-indazole 21

Compound **21** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (69%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.56 (s, 1H, NH), 9.00 (dd, J = 2.1, 0.7 Hz, 1H, H<sub>4</sub>), 8.37 (dd, J = 9.2, 2.1 Hz, 1H, H<sub>6</sub>), 8.11 (d, J = 7.6 Hz, 2H, H<sub>Ar</sub>), 7.83 (d, J = 7.6 Hz, 2H, H<sub>Ar</sub>), 7.64 (dd, J = 9.2, 0.7 Hz, 1H, H<sub>7</sub>).

<sup>13</sup>C NMR (63 MHz, DMSO-d<sub>6</sub>) δ 146.73 (C), 145.33 (C), 144.28 (C), 137.59 (q,  $J^2_{\text{Cq-CF}}$  = 32.1 Hz, C<sub>11</sub>), 129.55 (2×CH), 127.94 (2×CH), 127.87(q,  $J^3_{\text{CH-F}}$  = 3.8 Hz, C<sub>10</sub>), 123.18 (q,  $J^1_{\text{Cq-F}}$  = 272 Hz, C<sub>12</sub>), 124.08 (C), 121.05 (C), 120.22 (CH), 113.70 (CH).

IR v (neat, cm<sup>-1</sup>): 3210, 1624, 1528, 1486, 1334, 1319, 1076, 843, 788, 718.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_8F_3N_3O_2$  [M+H]  $^+$ : 308.0642, found 308.0641.

Melting Point: 223-225 °C.

#### 3-(4-Methoxyphenyl)-1*H*-indazole 22

Compound 22 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (75%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 11.38 (s, 1H, NH), 8.02 (d, J = 8 Hz, 1H, H<sub>7</sub>), 7.96 (d, J = 8.7 Hz, 2H, H<sub>Ar</sub>), 7.38 (t, J = 8 Hz, 1H, H<sub>6</sub>), 7.33 (d, J = 8 Hz, 1H, H<sub>4</sub>), 7.22 (t, J = 8 Hz, 1H, H<sub>5</sub>), 7.09 (d, J = 8.7 Hz, 2H, H<sub>Ar</sub>), 3.90 (s, 3H,OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.75 (C), 145.58 (C), 141.77 (C), 128.92 (2×CH), 126.74 (2×CH), 126.24 (C), 121.19 (CH), 120.92 (CH), 114.43 (CH), 110.27 (CH), 55.45 (OCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3245, 1620, 1501, 1320, 1102, 821, 721.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{12}N_2O$  [M+H]  $^+$ : 225.0983, found 225.0920.

Melting Point: 87-89 °C.

#### 3-(4-(Trifluoromethyl)phenyl)-1*H*-indazole 23

Compound 23 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (73%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.68 (s, 1H, NH), 8.12 (d, J = 8.1 Hz, 2H,  $H_{Ar}$ ), 8.03 (d, J = 7.9 Hz, 1H,  $H_7$ ), 7.78 (d, J = 7.9 Hz, 2H,  $H_{Ar}$ ), 7.45 (d, J = 5.7 Hz, 2H,  $H_{Ar}$ ), 7.31 – 7.25 (m, 1H,  $H_{Ar}$ ).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 144.35 (C), 141.69 (C), 137.10 (C), 129.95 (q,  $J^2_{\text{Cq-CF}} = 32.1$  Hz, C<sub>11</sub>), 127.65 (2×CH), 127.12 (2×CH), 125.81 (q,  $J^3_{\text{CH-F}} = 3.8$  Hz, C<sub>10</sub>), 124.23 (q,  $J^1_{\text{Cq-F}} = 272$  Hz, C<sub>12</sub>), 121.99 (C), 120.92 (CH), 120.78 (CH), 110.22 (CH).

IR v (neat, cm<sup>-1</sup>): 3222, 1621, 1321, 1100, 1067, 837, 703.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_9F_3N_2$  [M+H]  $^+$ : 263.0790, found 263.0793.

Melting Point: 163-165 °C.

#### Ethyl 4-(1*H*-indazol-3-yl)benzoate 24

Compound **24** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (78%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.29 (s, 1H, NH), 8.19 (d, J = 8.7 Hz, 2H,  $H_{Ar}$ ), 8.09 - 8.04 (m, 2H,  $H_{Ar}$ ), 7.45 (dt, J = 8.7, 8.3 Hz, 2H,  $H_{Ar}$ ), 7.31 – 7.15 (m, 2H,  $H_{Ar}$ ), 4.41 (q, J = 7.1 Hz, 2H, CH<sub>2</sub>), 1.42 (t, J = 7.1 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (**63 MHz, CDCl<sub>3</sub>**) δ 166.52 (**CO**), 144.73 (**C**), 141.71 (**C**), 137.94 (**C**), 130.12 (**2×CH**), 129.83 (**C**), 127.22 (**2×CH**), 127.05 (**CH**), 121.91 (**CH**), 121.03 (**CH**), 121.00 (**CH**), 61.07 (**CH<sub>2</sub>**), 14.39 (**CH<sub>3</sub>**).

IR v (neat, cm<sup>-1</sup>): 3150, 1706, 1610, 1277, 862, 740, 702.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{16}H_{14}N_2O_2$  [M+H]  $^+$ : 267.1131, found 267.1128.

Melting Point: 134-136 °C.

#### 4-(1*H*-indazol-3-yl)benzonitrile 25

Compound 25 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (82%).

<sup>1</sup>H NMR (250 MHz, DMSO-d<sub>6</sub>) δ 13.57 (s, 1H, NH), 8.23 (d, J = 8.4 Hz, 2H,  $H_{Ar}$ ), 8.15 (d, J = 7.3 Hz, 1H,  $H_7$ ), 7.97 (d, J = 8.4 Hz, 2H,  $H_{Ar}$ ), 7.66 (d, J = 7.3 Hz, 1H,  $H_4$ ), 7.46 (t, J = 7.3 Hz, 1H,  $H_6$ ), 7.28 (t, J = 7.3 Hz, 1H,  $H_5$ ).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 142.16 (CN), 141.81 (C), 138.75 (C), 133.33 (2×CH), 127.59 (2×CH), 126.90 (C), 122.24 (C), 120.92 (C), 120.52 (CH), 119.42 (CH), 111.38 (CH), 110.29 (CH).

IR v (neat, cm<sup>-1</sup>): 3303, 2230 (CN), 1607, 1337, 1099, 850, 738, 693.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_9N_3$  [M+H]  $^+$ : 220.0872, found 220.0869.

Melting Point: 154-156 °C.

#### 3-(Pyridin-3-yl)-1*H*-indazole 26

Compound **26** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (71%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.31 (s, 1H, NH), 8.11 (s, 1H, H<sub>12</sub>), 7.76 (d, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7. 40 (d, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.39 (t, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.18 (t, J = 7.5 Hz, 1H, H<sub>Ar</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.97 (C), 142.65 (C), 141.72 (C), 134.70 (C), 128.61 (CH), 128.49 (CH), 127.05 (CH), 123.84 (CH), 121.90 (CH), 120.91 (CH), 120.66 (CH), 110.26 (CH).

IR v (neat, cm<sup>-1</sup>): 3054, 2837, 1481, 1266, 1111, 805, 735, 696, 635.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_9N_3$  [M+H]  $^+$ : 196.0872, found 196.0869.

Melting Point: 168-170 °C.

#### (E)-3-Styryl-1H-indazole 27

Compound 27 is prepared according to the general procedure  $\mathbf{D}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (80%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.32 (s, 1H, NH), 8.06 (d, J = 7.5 Hz, 1H, H<sub>7</sub>), 7.60 (d, J = 5 Hz, 2H, H<sub>Ar</sub>), 7.61-7.48 (m, 3H, H<sub>Ar</sub>), 7.45-7.37 (m, 3H, H<sub>Ar</sub>), 7.32-7.22 (m, 2H, H<sub>Ar</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.18 (C), 141.53 (C), 137.22 (C), 131.33 (C), 128.76 (2×CH), 127.94 (CH), 127.04 (CH), 126.56 (2×CH), 121.43 (CH), 121.29 (CH), 120.92 (CH), 120.10 (CH), 110.07 (CH).

**IR** v (neat, cm<sup>-1</sup>): 3227, 1618, 1349, 1061, 959, 739, 683.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{12}N_2$  [M+H] +: 221.1076, found 221.1076.

Melting Point: 154-156 °C.

#### 5-Methoxy-3-(4-methoxyphenyl)-1*H*-indazole 28

Compound **28** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (78%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.12 (s, 1H, NH), 7.89 (d, J = 7.3 Hz, 2H,  $H_{Ar}$ ), 7.76 – 7.66 (m, 1H,  $H_{Ar}$ ), 7.50 – 7.36 (m, 2H,  $H_{Ar}$ ), 7.09 (d, J = 7.7 Hz, 2H,  $H_{Ar}$ ), 3.92 (s, 6H, OCH<sub>3</sub>, OCH<sub>3</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 160.95 (C), 156.52 (C), 133.60 (C), 133.45 (C), 130.08 (C), 130.03 (2×CH), 129.84 (2×CH), 122.60 (C), 120.36 (C), 115.77 (CH), 112.43 (CH), 101.94 (CH), 57.25 (OCH<sub>3</sub>), 56.81 (OCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3236, 1616, 1498, 1322, 1100, 1066, 826, 716.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{14}N_2O_2$  [M+H]  $^+$ : 255.1130, found 255.1128.

Melting Point: 83-85 °C.

#### 5-Methoxy-3-(4-(trifluoromethyl)phenyl)-1H-indazole 29

Compound **29** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (83%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 10.25 (s, 1H, NH), 8.07 (d, J = 8.1 Hz, 2H,  $H_{Ar}$ ), 7.78 (d, J = 8.1 Hz, 2H,  $H_{Ar}$ ), 7.42 (d, J = 9 Hz, 1H,  $H_6$ ), 7.32 (d, J = 2.3 Hz, 1H,  $H_4$ ), 7.14 (dd, J = 9.0, 2.3 Hz, 1H,  $H_7$ ), 3.90 (s, 3H, OC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.63 (C), 143.72 (C), 137.53 (C), 137.32 (C), 129.78 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>11</sub>), 127.51 (2×CH), 125.86 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>10</sub>), 124.24 (q,  $J^1_{\text{Cq-F}} = 272 \text{ Hz}$ , C<sub>12</sub>), 121.21 (2×CH), 119.32 (C), 111.25 (CH), 99.99 (CH), 55.82 (OCH3).

IR v (neat, cm<sup>-1</sup>): 3153, 2930, 1496, 1246, 1225, 1030, 832, 693.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{11}F_3N_2O$  [M+H]  $^+$ : 293.0899, found 293.0896.

Melting Point: 149-151 °C.

#### 1-Methyl-1*H*-indazole 31

**Method A:** compound **31** is prepared according to the general procedure **A**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (71%).

**Method B:** compound **31** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (92%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.00 (s, 1H, **H**<sub>3</sub>), 7.74 (d, J = 8 Hz, 1H, **H**<sub>7</sub>), 7.40 (d, J = 8 Hz, 2H, **H**<sub>Ar</sub>), 7.32 – 7.02 (m, 1H, **H**<sub>Ar</sub>), 4.09 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 139.85 (C), 132.68 (C), 126.17 (CH), 123.99 (CH), 121.04 (CH), 120.40 (CH), 108.87 (CH), 35.48 (CH<sub>3</sub>).

**IR** υ (**neat, cm**<sup>-1</sup>): 2934, 1612, 1227, 1153, 1103, 991, 866, 742.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>9</sub>N<sub>2</sub> [M+H] <sup>+</sup>: 133.0766, found 133.0764.

**Melting Point:** 57-59 °C.

#### 1-Phenyl-1*H*-indazole 33

Compound 33 is prepared according to the general procedure E. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (88%).

<sup>1</sup>**H NMR** (**400 MHz, DMSO-** $d_6$ ) δ 8.37 (s, 1H, **H**<sub>3</sub>), 7.88 (d, J = 8 Hz, 1H, **H**<sub>7</sub>), 7.83 (d, J = 8 Hz, 1H, **H**<sub>4</sub>), 7.76 (d, J = 7.8 Hz, 2H, **H**<sub>Ar</sub>), 7.58 (t, J = 7.8 Hz, 2H, **H**<sub>Ar</sub>), 7.48 (t, J = 7.8 Hz, 1H, **H**<sub>11</sub>), 7.39 (t, J = 8 Hz, 1H, **H**<sub>6</sub>), 7.26 (t, J = 8 Hz, 1H, **H**<sub>5</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 140.13 (C), 138.53 (C), 136.13 (C), 130.10 (2×CH), 127.93 (CH), 126.99 (CH), 125.50 (2×CH), 122.58 (CH), 122.11 (CH), 121.92 (CH), 110.87 (CH).

**IR** υ (neat, cm<sup>-1</sup>): 2914, 1498, 1341, 1257, 779, 747, 702.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{11}N_2$  [M+H]  $^+$ : 195.0922, found 195.0920.

**Melting Point:** 78-79 °C.

#### 1-(p-Tolyl)-1H-indazole 34

Compound 34 is prepared according to the general procedure E. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (90%).

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 8.34 (s, 1H, H<sub>3</sub>), 7.88 (d, J = 8.4 Hz, 1H, H<sub>7</sub>), 7.78 (d, J = 8.4 Hz, 1H, H<sub>4</sub>), 7.63 (d, J = 8.3 Hz, 2H, H<sub>Ar</sub>), 7.47 (t, 8.4Hz, 1H, H<sub>6</sub>), 7.39 (d, J = 8.3 Hz, 2H, H<sub>Ar</sub>), 7.25 (t, 8.4 Hz, 1H, H<sub>5</sub>), 2.39 (s,3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 138.64 (C), 137.76 (C), 136.43 (C), 135.75 (CH), 130.58 (2×CH), 127.84 (CH), 125.32 (2×CH), 122.67 (CH), 121.96 (CH), 121.84 (CH), 110.81 (CH), 21.00 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2921, 1493, 1332, 1255, 788, 742, 699.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{13}N_2$  [M+H] +: 209.1079, found 209.1076.

**Melting Point:** 61-63 °C.

#### 1-(4-Chlorophenyl)-1*H*-indazole 35

Compound **35** is prepared according to the general procedure **E**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (92%).

<sup>1</sup>**H NMR** (**400 MHz, DMSO-** $d_6$ ) δ 8.40 (s, 1H, **H**<sub>3</sub>), 7.90 (d, J = 7.5 Hz, 1H, **H**<sub>7</sub>), 7.85 (d, J = 8.6 Hz, 1H, **H**<sub>6</sub>), 7.81 (d, J = 8.6 Hz, 2H, **H**<sub>Ar</sub>), 7.63 (d, J = 8.6 Hz, 2H, **H**<sub>Ar</sub>), 7.50 (t, J = 7.7 Hz, 1H, **H**<sub>5</sub>), 7.31 – 7.25 (m, 1H, **H**<sub>4</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 136.68 (C), 130.01 (C), 128.27 (2×CH), 124.02 (2×CH), 122.38 (CH), 122.07 (CH), 110.96 (CH).

IR v (neat, cm<sup>-1</sup>): 2932, 1489, 1340, 1250, 790, 740, 700.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>13</sub>H<sub>10</sub>ClN<sub>2</sub> [M+H] <sup>+</sup>: 229.0533, found 229.0529.

**Melting Point:** 71-72 °C.

#### 1-methyl-3-(pyridin-2-yl)-1*H*-indazole 36

Compound **36** is prepared according to the general procedure **F**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (58%).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.77 (d, J = 4.8 Hz, 1H,  $\mathbf{H}_{12}$ ), 8.65 (d, J = 8.2 Hz, 1H,  $\mathbf{H}_{9}$ ), 8.17 (d, J = 8.0 Hz, 1H,  $\mathbf{H}_{7}$ ), 7.78 (td, J = 8.2, 1.8 Hz, 1H,  $\mathbf{H}_{10}$ ), 7.49 – 7.39 (m, 2H,  $\mathbf{H}_{Ar}$ ), 7.33 – 7.22 (m, 2H,  $\mathbf{H}_{Ar}$ ), 4.16 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.57 (C), 149.47 (CH), 142.71 (C), 141.55 (C), 136.31 (CH), 126.47 (CH), 123.58 (CH), 122.31 (CH), 122.07 (C), 121.61 (CH), 120.77 (CH), 108.89 (CH), 35.77 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3050, 1592, 1296, 1104, 739, 662.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{12}N_3$  [M+H]  $^+$ : 210.1031, found 210.1031.

#### Methyl-3-(pyridin-4-yl)-1*H*-indazole 37

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Compound 37 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (68%).

<sup>1</sup>**H NMR (400 MHz, MeOD)** δ 7.97 (d, J = 7.8 Hz, 1H,  $\mathbf{H_7}$ ), 7.80 (d, J = 8.3Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.54 (d, J = 8.0 Hz, 1H,  $\mathbf{H_4}$ ), 7.45 (t, 7.8 Hz, 1H,  $\mathbf{H_6}$ ), 7.32 (d, J = 8.3 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.21 (t, J = 7.8 Hz, 1H,  $\mathbf{H_5}$ ), 4.10 (s, 3H, NC $\mathbf{H_3}$ ), 2.41 (s, 3H, C $\mathbf{H_3}$ ).

<sup>13</sup>C NMR (101 MHz, MeOD) δ 143.59 (C), 141.41 (C), 137.64 (C), 130.36 (C), 129.07 (2×CH), 126.94 (2×CH), 126.39 (C), 121.06 (CH), 120.81 (CH), 109.12 (CH), 34.05 (NCH<sub>3</sub>), 19.92 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2921, 1492, 1334, 1254, 790, 740, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_2$  [M+H]  $^+$ : 223.1235, found 223.1235.

**Melting Point:** 52-54 °C.

#### 1-Methyl-3-o-tolyl-1H-indazole 38

Compound 38 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (63%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 7.68 (dt, J = 8.1, 1.0 Hz, 1H,  $\mathbf{H}_7$ ), 7.55 (t, J = 8.1 Hz, 1H,  $\mathbf{H}_6$ ), 7.48 – 7.45 (m, 2H,  $\mathbf{H}_{Ar}$ ), 7.41 – 7.32 (m, 3H,  $\mathbf{H}_{Ar}$ ), 7.24 – 7.15 (m, 1H,  $\mathbf{H}_{Ar}$ ), 4.17 (s, 3H, NCH<sub>3</sub>), 2.44 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.49 (C), 140.66 (C), 137.19 (C), 132.39 (C), 130.67 (C), 130.51 (CH), 128.06 (CH), 126.17 (CH), 125.65 (CH), 123.02 (CH), 121.42 (CH), 120.45 (CH), 108.97 (CH), 35.51 (NCH<sub>3</sub>), 20.53 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3059, 2923, 1514, 1238, 757, 747, 672, 577.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_2$  [M+H]  $^+$ : 223.1235, found 223.1232.

Melting Point: 241-243 °C.

#### 1-Methyl-3-*m*-tolyl-1*H*-indazole 39

Compound **39** is prepared according to the general procedure **F**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (65%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.06 (dd, J = 7.8, 3.6 Hz, 1H, H<sub>7</sub>), 7.83 (d, J = 9.1 Hz, 2H, H<sub>Ar</sub>), 7.51 – 7.35 (m, 3H, H<sub>Ar</sub>), 7.29 – 7.19 (m, 2H, H<sub>Ar</sub>), 4.14 (s, 3H, NCH<sub>3</sub>), 2.50 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.88 (C), 141.44 (C), 138.49 (C), 133.60 (C), 128.71 (C), 128.65 (CH), 128.02 (CH), 126.26 (CH), 124.57 (CH), 121.67 (CH), 121.45 (CH), 120.86 (CH), 109.19 (CH), 35.52 (NCH<sub>3</sub>), 21.60 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2921, 1492, 1333, 1254, 790, 740, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_2$  [M+H]  $^+$ : 223.1235, found 223.1235.

#### 3-(4-Chlorophenyl)-1-methyl-1*H*-indazole 40

Compound 40 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (70%).

<sup>1</sup>**H NMR (400 MHz, DMSO-** $d_6$ ) δ 8.05 (d, J = 8 Hz, 1H,  $H_7$ ), 7.99 (d, J = 8.7 Hz, 2H,  $H_{Ar}$ ), 7.69 (d, J = 8 Hz, 1H,  $H_4$ ), 7.55 (d, J = 8.7 Hz, 2H,  $H_{Ar}$ ), 7.46 (t, J = 8 Hz, 1H,  $H_6$ ), 7.24 (t, J = 8 Hz, 1H,  $H_5$ ), 4.10 (s, 3H, C $H_3$ ).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 141.66 (C), 141.24 (C), 132.78 (C), 132.65 (C), 129.42 (2×CH), 128.71 (2×CH), 126.76 (C), 121.83 (CH), 121.12 (CH), 120.94 (CH), 110.75 (CH), 35.91 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3021, 2913, 1618, 1530, 1349, 1225, 1241, 772, 758, 677.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>14</sub>H<sub>12</sub>ClN<sub>2</sub> [M+H] <sup>+</sup>: 243.0689, found 243.0685.

Melting Point: 103-105 °C.

#### 1-Methyl-3-(4-(trifluoromethyl)phenyl)-1*H*-indazole 41

Compound 41 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (68%).

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 8.21 (d, J = 8.2 Hz, 2H,  $H_{Ar}$ ), 8.12 (d, J = 8.3 Hz, 1H,  $H_7$ ), 7.85 (d, J = 8.2 Hz, 2H,  $H_{Ar}$ ), 7.73 (d, J = 8.3 Hz, 1H,  $H_4$ ), 7.49 (t, J = 8.3 Hz, 1H,  $H_6$ ), 7.28 (t, J = 8.3 Hz, 1H,  $H_5$ ), 4.14 (s, 3H, C $H_3$ ).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 141.74 (C), 140.76 (C), 137.74 (C), 128.17 (q,  $J^2_{\text{Cq-CF}}$  = 32.3 Hz, C<sub>11</sub>), 127.51 (2×CH), 126.87 (C), 126.25 (q,  $J^3_{\text{CH-F}}$  = 4 Hz, H<sub>10</sub>), 124.80 (q,  $J^1_{\text{Cq-F}}$  = 272 Hz, C<sub>12</sub>), 122.23 (CH), 121.08 (CH), 121.05 (CH), 110.90 (CH), 36.14 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2930, 1496, 1343, 1171, 1112, 841, 772, 668.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{12}F_3N_2$  [M+H]  $^+$ : 277.0950, found 277.0948.

**Melting Point:** 70-73 °C.

#### 4-(1-methyl-1H-indazol-3-yl)benzonitrile 42

Compound 42 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (57%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.10 (d, J = 8.3 Hz, 2H,  $H_{Ar}$ ), 8.00 (d, J = 8.3 Hz, 1H,  $H_7$ ), 7.77 (d, J = 8.3 Hz, 2H,  $H_{Ar}$ ), 7.47 (d, J = 4.0 Hz, 2H,  $H_{Ar}$ ), 7.28 (dd, J = 8.2, 4.0 Hz, 1H,  $H_{Ar}$ ), 4.15 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.59 (C), 141.44 (C), 138.60 (2×CH), 127.45 (2×CH), 126.63 (C), 121.84 (C), 121.51 (C), 120.78 (CH), 119.06 (CH), 118.32 (CH), 110.92 (CH), 109.63 (CH), 35.82 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2224 (CN), 1257, 856, 752, 668.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{12}N_3$  [M+H]  $^+$ : 234.1031, found 234.1026.

Melting Point: 153-155 °C.

#### Ethyl 4-(1-methyl-1*H*-indazol-3-yl)benzoate 43

Compound 43 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (59%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.17 (d, J = 8.7 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 8.06 – 8.02 (m, 2H,  $\mathbf{H_{Ar}}$ ), 7.45 (d, J = 3.4 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.31 – 7.21 (m, 2H,  $\mathbf{H_{Ar}}$ ), 4.42 (q, J = 7.2 Hz, 2H, OCH<sub>2</sub>), 4.15 (s, 3H, NCH<sub>3</sub>), 1.43 (t, J = 7.2 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.54 (CO), 142.49 (C), 141.53 (C), 138.10 (C), 130.12 (C), 130.08 (2×CH), 129.45 (C), 126.93 (2×CH), 126.45 (CH), 121.46 (CH), 121.14 (CH), 109.42 (CH), 60.99 (OCH<sub>2</sub>), 35.71 (NCH<sub>3</sub>), 14.39 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2981, 1706, 1267, 1100, 752, 701, 666.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{17}N_2O_2$  [M+H]  $^+$ : 281.1290, found 281.1287.

**Melting Point:** 71-73 °C.

#### 1-Methyl-3-(pyridin-4-yl)-1*H*-indazole 44

Compound 44 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (61%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl**<sub>3</sub>) δ 8.71 (d, J = 6 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 8.04 (d, J = 8.2 Hz, 1H,  $\mathbf{H_7}$ ), 7.89 (d, J = 6.0 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.46 (d, J = 3.6 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.28 (dd, J = 7.8, 6 Hz, 1H,  $\mathbf{H_5}$ ), 4.15 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 150.28 (2×CH), 141.55 (C), 141.17 (C), 140.58 (C), 126.57 (C), 121.83 (CH), 121.63 (CH), 121.29 (2×CH), 120.78 (CH), 109.62 (CH), 35.82 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 1517.57, 1088.36, 826.53, 737.21, 665.92.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{12}N_3$  [M+H]  $^+$ : 210.1031, found 210.1029.

Melting Point: 88-90 °C.

## 1-Phenyl-3-p-tolyl-1H-indazole 45

Compound **45** is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (61%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl<sub>3</sub>**) δ 8.11 (d, J = 8.2 Hz, 1H, **H**<sub>7</sub>), 7.97 (d, J = 8.0 Hz, 2H, **H**<sub>Ar</sub>), 7.82 (t, J = 8.4 Hz, 3H, **H**<sub>Ar</sub>), 7.58 (t, J = 8.0 Hz, 2H, **H**<sub>Ar</sub>), 7.50 – 7.45 (m, 1H, **H**<sub>Ar</sub>), 7.33 – 7.28 (m, 1H, **H**<sub>Ar</sub>), 2.47 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.17 (C), 140.30 (C), 140.19 (C), 138.14 (C), 130.36 (C), 129.55 (2×CH), 129.44 (2×CH), 127.66 (2×CH), 127.05 (C), 126.58 (CH), 123.18 (CH), 122.98 (2×CH), 121.79 (CH), 121.68 (CH), 110.64 (CH), 21.40 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3046, 2914, 1610, 1530, 1499, 1346, 1228, 1211, 772, 739, 697.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{20}H_{17}N_2$  [M+H] +: 285.1392, found 285.1388.

Melting Point: 95-97 °C.

# 3-(4-(Trifluoromethyl)phenyl)-1-p-tolyl-1H-indazole 46

Compound **46** is prepared according to the general procedure **F**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (65%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl<sub>3</sub>**) δ 8.19 (d, J = 8.2 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 8.09 (d, J = 8.2 Hz, 1H,  $\mathbf{H_7}$ ), 7.78 (t, J = 8.4 Hz, 3H,  $\mathbf{H_{Ar}}$ ), 7.68 (d, J = 8.4 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.49 (dd, J = 8.2, 4.2 Hz, 1H,  $\mathbf{H_5}$ ), 7.42 – 7.30 (m, 3H,  $\mathbf{H_{Ar}}$ ), 2.48 (s, 3H,  $\mathbf{CH_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.11 (C), 140.53 (C), 137.37 (C), 137.06 (C), 136.93 (C), 130.07 (2×CH), 129.74 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>11</sub>), 127.75 (2×CH), 127.17 (2×CH), 125.75 (q,  $J^I_{\text{Cq-F}} = 271 \text{ Hz}$ , C<sub>12</sub>), 125.71 (q,  $J^3_{\text{CH-F}} = 3.3 \text{ Hz}$ , C<sub>10</sub>), 123.14 (2×CH), 122.74 (CH), 122.29 (CH), 121.07 (CH), 110.93 (CH), 21.12 (CH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 1535, 1515, 1367, 1321, 1104, 1066, 845, 770, 740.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{16}F_3N_2$  [M+H]  $^+$ : 353.1266, found 353.1262.

Melting Point: 91-93 °C.

## 1,3-Bis(4-chlorophenyl)-1*H*-indazole 47

Compound 47 is prepared according to the general procedure  $\mathbf{F}$ . The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (66%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>)** δ 8.18 (d, J = 8.2 Hz, 1H, **H**<sub>7</sub>), 8.09 (d, J = 8.5 Hz, 2H, **H**<sub>Ar</sub>), 7.90 (t, J = 8.3 Hz, 3H, **H**<sub>Ar</sub>), 7.77 – 7.51 (m, 5H, **H**<sub>Ar</sub>), 7.40 (t, J = 7.5 Hz, 1H, **H**<sub>5</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.08 (C), 141.58 (C), 140.09 (C), 135.12 (C), 133.08 (C), 132.86 (C), 131.55 (2×CH), 131.00 (2×CH), 130.88 (2×CH), 129.90 (C), 125.97 (2×CH), 124.75 (CH), 124.14 (CH), 123.26 (CH), 112.88 (CH).

IR v (neat, cm<sup>-1</sup>): 1496, 1325, 1066, 838, 745, 665.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{13}C_{12}N_2$  [M+H]  $^+$ : 339.0456, found 339.0451.

Melting Point: 132-134 °C.

### 1-(4-Chlorophenyl)-3-(4-(trifluoromethyl)phenyl)-1H-indazole 48

Compound **48** is prepared according to the general procedure **F**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (65%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.17 (d, J = 8.1 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 8.09 (d, J = 8.1 Hz, 1H,  $\mathbf{H_{7}}$ ), 7.84 – 7.74 (m, 5H,  $\mathbf{H_{Ar}}$ ), 7.53 (dd, J = 7.5, 8.1 Hz, 3H,  $\mathbf{H_{Ar}}$ ), 7.36 (t, J = 7.5 Hz, 1H,  $\mathbf{H_{5}}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.86 (C), 140.33 (C), 138.43 (C), 136.54 (C), 132.48 (C), 130.18 (q,  $J^2_{\text{Cq-CF}}$  = 32.5 Hz, C<sub>11</sub>), 129.66 (2×CH), 127.81 (2×CH), 127.61 (CH), 125.80 (q,  $J^3_{\text{CH-F}}$  = 3.8 Hz, C<sub>10</sub>), 124.19 (q,  $J^1_{\text{Cq-F}}$  = 273 Hz, C<sub>12</sub>), 124.07 (2×CH), 123.07 (2×CH), 122.66 (CH), 121.30 (CH), 110.70 (CH).

IR v (neat, cm<sup>-1</sup>): 1496, 1325, 1174, 1163, 1114, 1106, 1097, 1090, 846, 771, 745, 711, 665.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>20</sub>H<sub>13</sub>ClF<sub>3</sub>N<sub>2</sub> [M+H] <sup>+</sup>: 373.0719, found 373.0714.

Melting Point: 135-137 °C.

# 1-Methyl-4-nitro-1*H*-indazole 49a

Compound 49a is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (79%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.60 (s, 1H, H<sub>3</sub>), 8.15 (d, J = 8 Hz, 1H, H<sub>5</sub>), 7.77 (d, J = 8.4 Hz, 1H, H<sub>7</sub>), 7.52 (t, J = 8.4 Hz, 1H, H<sub>6</sub>), 4.18 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 140.51 (C), 141.54 (C), 132.66 (CH), 125.48 (CH), 118.23 (CH), 117.08 (C), 116.14 (CH), 36.16 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3051, 2940, 1511, 1322, 1266, 963, 807, 737, 626.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 178.0615, found 178.0611.

Melting Point: 132-134 °C.

## 1-Methyl-5-nitro-1*H*-indazole 49b

$$O_2N \xrightarrow{5} \overset{4}{\overset{3}{\overset{3}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}} N_2} \qquad \qquad C_8H_7N_3O_2 \\ N \xrightarrow{1} \qquad \qquad MW: 177,1601 \text{ g/mol}$$

Compound **49b** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a beige solid (86%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.70 (d, J = 1.8 Hz, 1H, **H**<sub>3</sub>), 8.26 (dd, J = 9.2, 2 Hz, 1H, **H**<sub>4</sub>), 8.19 (d, J = 1.8 Hz, 1H, **H**<sub>6</sub>), 7.45 (d, J = 9.2 Hz, 1H, **H**<sub>7</sub>), 4.14 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.62 (C), 141.86 (C), 135.92 (C), 123.38 (CH), 121.72 (CH), 119.25 (CH), 109.56 (CH), 36.37 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3035, 1614, 1492, 1329, 1270, 1066, 826, 784, 735, 625.

**HRMS** (**ESI**+): Exact mass calcd for  $C_8H_7N_3O_2$  [M+H]  $^+$ : 178.0614, found 178.0611.

Melting Point: 160-162 °C.

## 1-Methyl-6-nitro-1*H*-indazole 49c

Compound 49c is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (83%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.39 (s, 1H, H<sub>3</sub>), 8.11 (s, 1H, H<sub>7</sub>), 8.02 (dd, J = 8.8, 1.3 Hz, 1H, H<sub>5</sub>), 7.84 (d, J = 8.8 Hz, 1H, H<sub>4</sub>), 4.19 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.80 (C), 138.94 (C), 133.51 (C), 127.39 (CH), 122.17 (CH), 115.65 (CH), 106.13 (CH), 36.43 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3107, 2950, 1515, 1468, 1351, 1340, 990, 842, 810, 729.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 178.0615, found 178.0611.

Melting Point: 124-126 °C.

## 1-Methyl-7-nitro-1*H*-indazole 49d

Compound 49d is prepared according to the general procedure B. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (81%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.15 (s, 1H,  $\mathbf{H_3}$ ), 8.12 (d, J = 7.7 Hz, 1H,  $\mathbf{H_6}$ ), 8.02 (d, J = 7.8 Hz, 1H,  $\mathbf{H_4}$ ), 7.23 (t, J = 7.7 Hz, 1H,  $\mathbf{H_5}$ ), 4.26 (s, 3H, C $\mathbf{H_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.60 (C), 134.38 (C), 131.49 (C), 129.29 (CH), 128.31 (CH), 124.97 (CH), 120.10 (CH), 41.32 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3094, 2952, 1515, 1321, 1258, 870, 790, 733, 630.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 178.0612, found 178.0611.

Melting Point: 104-106 °C.

# 1-Methyl-5-nitro-3-phenyl-1*H*-indazole 50a

$$\begin{array}{c} & & & 11 \\ & & & & 10 \\ & & & & & 10 \\ & & & & & & \\ O_2N & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Compound 50a is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (61%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl<sub>3</sub>**) δ 8.95 (s, 1H,  $\mathbf{H_4}$ ), 8.29 (d, J = 9.5 Hz, 1H,  $\mathbf{H_6}$ ), 7.92 (d, J = 7.6 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.50 (dt, J = 8.0, 9.3 Hz, 4H,  $\mathbf{H_{Ar}}$ ), 4.16 (s, 3H,  $\mathbf{CH_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.83 (C), 142.97 (C), 142.50 (C), 131.87(C), 129.08 (2×CH), 128.88 (C), 127.42 (2×CH), 121.46 (CH), 120.78 (CH), 119.36 (CH), 109.42 (CH), 35.99 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3093, 2945, 1614, 1515, 1328, 1276, 1078, 746, 662.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{11}N_3O_2$  [M+H]  $^+$ : 254.0926, found 254.0924.

**Melting Point:** 123 °C.

# 1-Methyl-6-nitro-3-phenyl-1*H*-indazole 50b

$$O_2N$$
  $O_2N$   $O_2N$ 

Compound 50b is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (53%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.39 (d, J = 1.7 Hz, 1H,  $H_7$ ), 8.10 (d, J = 8.9 Hz, 1H,  $H_5$ ), 8.05 (dd, J = 8.9, 1.8 Hz, 1H,  $H_4$ ), 7.93 (d, J = 8 Hz, 2H,  $H_{Ar}$ ), 7.53 (t, J = 7.5 Hz, 2H,  $H_{Ar}$ ), 7.45 (t, J = 7.4 Hz, 1H,  $H_{Ar}$ ), 4.23 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.81 (C), 144.86 (C), 140.55 (C), 132.68 (C), 129.39 (2×CH), 128.95 (C), 127.76 (2×CH), 124.99 (CH), 122.55 (CH), 115.93 (CH), 106.35 (CH), 36.46 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3085, 1514, 1339, 1286, 1116, 962, 781, 734, 689.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>14</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 254.0926, found 254.0924.

Melting Point: 109-111 °C.

# 1-Methyl-7-nitro-3-phenyl-1*H*-indazole 50d

Compound **50d** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (69%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl**<sub>3</sub>) δ 8.25 (dd, J = 8.0, 0.8 Hz, 1H, **H**<sub>6</sub>), 8.13 (dd, J = 7.7, 0.8 Hz, 1H, **H**<sub>4</sub>), 7.86 (d, J = 8.0 Hz, 2H, **H**<sub>Ar</sub>), 7.53 (t, J = 7.4 Hz, 2H, **H**<sub>Ar</sub>), 7.48 - 7.46 (m, 1H, **H**<sub>Ar</sub>), 7.26 (t, J = 8.0 Hz, 1H, **H**<sub>Ar</sub>), 4.28 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.64 (C), 132.87 (C), 132.23 (C), 130.25 (C), 129.37 (2×CH), 129.13 (C), 128.45 (CH), 128.27 (2×CH), 127.04 (CH), 124.93 (CH), 120.33 (CH), 41.24 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3035, 2956, 1617, 1525, 1389, 1363, 1256, 985, 897, 728, 691.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{11}N_3O_2$  [M+H]  $^+$ : 254.0927, found 254.0924.

**Melting Point:** 76-78 °C.

# 1-Methyl-4-nitro-3-phenyl-1*H*-indazole 50e

Compound **50e** is prepared according to the general procedure **D**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (71%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 7.83 (d, J = 7.9 Hz, 1H, **H**<sub>5</sub>), 7.72 (d, J = 8.5 Hz, 1H, **H**<sub>7</sub>), 7.52 – 7.39 (m, 6H, **H**<sub>Ar</sub>), 4.19 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.56 (C), 143.07 (C), 142.50 (C), 133.16 (C), 128.38 (2×CH), 128.03 (C), 127.83 (2×CH), 125.26 (CH), 117.55 (CH), 112.62 (CH), 114.64 (CH), 35.88 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3211, 2947, 1521, 1340, 978, 829, 729, 700, 666.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{11}N_3O_2$  [M+H]  $^+$ : 254.0927, found 254.0924.

Melting Point: 109-111 °C.

### 1-Methyl-5-nitro-3,7-diphenyl-1*H*-indazole 51a

Method A: compound **51a** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (21%).

Method B: compound **51a** is prepared according to the general procedure **G** using indazole **50a** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (59%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.94 (d, J = 2.1 Hz, 1H, H<sub>4</sub>), 8.15 (d, J = 2.1 Hz, 1H, H<sub>6</sub>), 7.95 – 7.91 (m, 2H, H<sub>Ar</sub>), 7.58 – 7.47 (m, 8H, H<sub>Ar</sub>), 3.70 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.98 (C), 142.08 (C), 140.96 (C), 136.51 (C), 131.82 (C), 129.66 (2×CH), 129.10 (2×CH), 128.90 (C), 128.75 (CH), 128.44 (2×CH), 127.65 (2×CH), 126.62 (CH), 122.72 (CH), 121.97 (CH), 118.01 (CH), 39.41 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3055, 2947, 1597, 1524, 1330, 1074, 780, 699.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{20}H_{15}N_3O_2$  [M+H]  $^+$ : 330.1239, found 330.1237.

**Melting Point:** 156 °C.

# 1-Methyl-6-nitro-3,7-diphenyl-1*H*-indazole 51b

Compound **51b** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (19%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl**<sub>3</sub>) δ 8.06 (d, J = 8.8 Hz, 1H, **H**<sub>5</sub>), 7.89 (d, J = 7.0 Hz, 2H, **H**<sub>Ar</sub>), 7.67 (d, J = 8.8 Hz, 1H, **H**<sub>4</sub>), 7.55 – 7.49 (m, 5H, **H**<sub>Ar</sub>), 7.46 – 7.42 (m, 3H, **H**<sub>Ar</sub>), 3.48 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.94 (C), 144.17 (C), 138.96 (C), 132.52 (C), 132.50 (C), 130.04 (2×CH), 129.21 (C), 129.17 (2×CH), 128.67, 128.48 (2×CH), 127.75 (2×CH), 123.93 (CH), 121.40 (CH), 120.78 (CH), 116.44 (CH), 39.34 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3051, 2947, 1522, 1356, 1263, 1025, 758, 695.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{20}H_{15}N_3O_2$  [M+H]  $^+$ : 330.1239, found 330.1237.

Melting Point: 123-125 °C.

## 1-Methyl-4-nitro-7-phenyl-1*H*-indazole 52

Compound **52** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (45%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 8.69 (s, 1H,  $\mathbf{H_3}$ ), 8.17 (d, J = 7.9 Hz, 1H,  $\mathbf{H_5}$ ), 7.53 – 7.42 (m, 5H,  $\mathbf{H_{Ar}}$ ), 7.33 (d, J = 7.9 Hz, 1H,  $\mathbf{H_6}$ ), 3.67 (s, 3H,  $\mathbf{CH_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 136.81 (C), 133.51 (C), 132.71 (C), 129.49 (C), 129.36 (2×CH), 128.95 (CH), 128.69 (CH), 128.46 (2×CH), 128.11 (CH), 127.18 (CH), 118.20 (CH), 39.55 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2918, 2849, 1518, 1336, 963, 838, 699.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{11}N_3O_2$  [M+H]  $^+$ : 253.0859, found 253.0856.

## 1-Methyl-1*H*-indazole-6-carbonitrile 53a

N 
$$\stackrel{4}{\underset{6}{\overset{3}{\overset{3}{\overset{}}{\overset{}}{\overset{}}}}}$$
 N  $\stackrel{2}{\underset{7}{\overset{}}}$   $\stackrel{C_9H_7N_3}{\underset{7}{\overset{}}}$  MW: 157 g/mol

Compound 53a is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (77%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl**<sub>3</sub>) δ 8.07 (s, 1H, **H**<sub>3</sub>), 7.83 (dd, J = 8.3, 0.7 Hz, 1H, **H**<sub>5</sub>), 7.79 (d, J = 0.7 Hz, 1H, **H**<sub>7</sub>), 7.36 (dd, J = 8.3, 1.1 Hz, 1H, **H**<sub>4</sub>), 4.14 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.53 (C), 133.15 (C), 125.92 (C), 122.56 (CH), 122.32 (CH), 119.29 (CH), 114.33 (CH), 109.39 (CH), 35.87 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3072, 2942, 2222, 1475, 1380, 1293, 1229, 763, 875, 828, 763, 623.

**HRMS** (**ESI**+): Exact mass calcd for  $C_9H_7N_3$  [M+H]  $^+$ : 158.0719, found 158.0712.

Melting Point: 261-263 °C.

## 5-(Trifluoromethyl)-1-methyl-1*H*-indazole 53b

Compound **53b** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (79%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 (s, 1H, H<sub>3</sub>), 8.05 (s, 1H, H<sub>4</sub>), 7.60 (d, J = 8.8 Hz, 1H, H<sub>6</sub>), 7.48 (d, J = 8.8 Hz, 1H, H<sub>7</sub>), 4.11 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 140.68 (C), 133.84 (C), 124.75 ( $q_{Cq-F}$ ,  $J^I = 273$  Hz,  $C_8$ ), 123.38 ( $q_{Cq-CF}$ ,  $J^2 = 32.3$  Hz,  $C_5$ ), 123.11 (C), 122.74 ( $q_{Cq-CF}$ ,  $J^2 = 32.3$  Hz,  $C_5$ ), 122.83 ( $q_{CH-F}$ ,  $J^3 = 3.8$  Hz,  $C_4$ ), 119.32 ( $q_{CH-F}$ ,  $J^3 = 4$  Hz,  $C_6$ ), 109.53 (CH), 35.74 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2945, 1633, 1332, 1179, 1093, 933, 804, 716, 613.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>9</sub>H<sub>7</sub>F<sub>3</sub>N<sub>2</sub> [M+H] <sup>+</sup>: 201.0638, found 201.0634.

**Melting Point:** 49-51 °C.

## Methyl 1-methyl-1*H*-indazole-5-carboxylate 53c

Compound 53c is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (77%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.51 (s, 1H, H<sub>3</sub>), 8.07 (d, J = 8.8 Hz, 2H, H<sub>Ar</sub>), 7.40 (d, J = 8.8 Hz, 1H, H<sub>7</sub>), 4.10 (s, 3H, NCH<sub>3</sub>), 3.95 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.26 (CO), 141.51 (C), 134.45 (C), 127.03 (C), 124.55 (CH), 123.62 (CH), 122.76 (CH), 108.59 (CH), 52.03 (OCH<sub>3</sub>), 35.66 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2957, 1697, 1618, 1423, 1250, 1192, 981, 825, 766, 630.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{10}H_{10}N_2O_2$  [M+H]  $^+$ : 191.0820, found 191.0815.

**Melting Point:** 117 °C.

### 5-Fluoro-1-methyl-1*H*-indazole 53d

Compound **53d** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as yellow oil (73%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.92 (d, J = 0.6 Hz, 1H, H<sub>4</sub>), 7.32 (dt, J = 7.8, 3.6 Hz, 2H, H<sub>Ar</sub>), 7.16 (td, J = 9.0, 2.3 Hz, 1H, H<sub>Ar</sub>), 4.06 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.96 (C), 156.60 (C), 136.93 (C), 132.36 (d, J = 5 Hz, C<sub>6</sub>), 123.84 (d, J = 10.1 Hz, C<sub>4</sub>), 115.87 (d, J = 28.2 Hz, C<sub>5</sub>), 109.95 (d, J = 9.1 Hz, C<sub>7</sub>), 104.88 (d, J = 24.3 Hz, CH), 35.76 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3068, 1500, 1249, 1143, 802, 761.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>FN<sub>2</sub> [M+H] <sup>+</sup>: 151.0671, found 151.0666.

# 5-chloro-1-methyl-1H-indazole 53e

Compound 53e is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as an orange solid (78%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 7.92 (s, 1H,  $\mathbf{H_3}$ ), 7.70 (d, J = 1.0 Hz, 1H,  $\mathbf{H_4}$ ), 7.33 (d, J = 1.6 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 4.07 (s, 3H,  $\mathbf{CH_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.54 (C), 132.23 (C), 127.07 (C), 126.37 (CH), 124.93 (CH), 120.34 (CH), 110.16 (CH), 35.88 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3076, 2934, 1482, 1219, 880, 802, 746.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>ClN<sub>2</sub> [M+H] <sup>+</sup>: 167.1643, found 167.1641.

**Melting Point:** 65-67 °C.

## 1-Methyl-3-phenyl-1*H*-indazole-6-carbonitrile 54a

Compound **54a** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (55%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.09 (d, J = 8.4 Hz, 1H,  $H_5$ ), 7.91 (d, J = 7.1 Hz, 2H,  $H_{Ar}$ ), 7.80 (s, 1H,  $H_7$ ), 7.52 (t, J = 7.5 Hz, 2H,  $H_{Ar}$ ), 7.47 – 7.39 (m, 2H,  $H_{Ar}$ ), 4.18 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.44 (C<sub>8</sub>), 140.08 (C), 132.40 (C), 128.96 (2×CH), 128.46 (C), 127.37 (2×CH), 123.53 (C), 122.89 (CH), 122.62 (CH), 119.22 (CH), 114.52 (CH), 109.48 (CH), 35.89 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3068, 2941, 2224, 1519, 1247, 965, 805, 699, 660, 628.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{11}N_3$  [M+H]  $^+$ : 234.1028, found 234.1025.

Melting Point: 99-101 °C.

# 5-(Trifluoromethyl)-1-methyl-3-phenyl-1H-indazole 54b

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Compound **54b** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (49%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.30 (s, 1H,  $\mathbf{H_4}$ ), 7.93 (d, J = 7.2 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.64 (dd, J = 8.8, 1.2 Hz, 1H,  $\mathbf{H_{Ar}}$ ), 7.57 – 7.41 (m, 4H,  $\mathbf{H_{Ar}}$ ), 4.15 (s, 3H, C $\mathbf{H_3}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.03 (C), 142.16 (C), 132.62 (C), 128.94 (2×CH), 128.36 (C), 127.42 (2×CH), 124.75 ( $q_{Cq-F}$ ,  $J^I = 273$  Hz,  $Q_{S}$ , 123.67 ( $q_{Cq-CF}$ ,  $Q_{Cq-CF}$ ,  $Q_{S} = 32.3$  Hz,  $Q_{S} = 32.3$ 

IR v (neat, cm<sup>-1</sup>): 2929, 1622, 1316, 1277, 1138, 1097, 805, 685, 623.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{11}F_3N_2$  [M+H]  $^+$ : 277.0950, found 277.0947.

**Melting Point:** 74 °C.

## Methyl 1-methyl-3-phenyl-1*H*-indazole-5-carboxylate 54c

Compound 54c is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (43%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.75 (d, J = 0.6 Hz, 1H, H<sub>4</sub>), 8.08 (dd, J = 8.9, 1.4 Hz, 1H, H<sub>6</sub>), 7.96 (d, J = 7.1 Hz, 2H, H<sub>Ar</sub>), 7.52 (t, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.41 (dd, J = 7.8, 8.1 Hz, 2H, H<sub>Ar</sub>), 4.11 (s, 3H, NCH<sub>3</sub>), 3.95 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.26 (C<sub>12</sub>), 145.51 (C), 143.03 (C), 132.76 (C), 128.88 (2×CH), 128.29 (C), 127.47 (2×CH), 127.09 (CH), 124.84 (CH), 123.08 (CH), 121.30 (CH), 108.86 (CH), 52.06 (OCH<sub>3</sub>), 35.66 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2947, 1700, 1611, 1292, 1238, 1087, 780, 696, 669.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{16}H_{14}N_2O_2$  [M+H]  $^+$ : 267.1132, found 267.1128.

Melting Point: 95-97 °C.

### 5-Fluoro-1-methyl-3-phenyl-1*H*-indazole 54d

Compound **54d** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (69%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.67 (dd, J = 9.3, 4.6 Hz, 1H, H<sub>6</sub>), 7.59 – 7.52 (m, 2H, H<sub>Ar</sub>), 7.51 – 7.44 (m, 3H, H<sub>Ar</sub>), 7.18 – 7.06 (m, 2H, H<sub>Ar</sub>), 4.16 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.00 (C), 157.63 (C), 145.46 (C), 136.32 (d, J = 8.1 Hz, C<sub>6</sub>), 129.51 (C), 129.20 (CH), 128.94 (CH), 120.56 (d, J = 12,1 Hz, C<sub>7</sub>), 119.13 (d, J = 9.1 Hz, CH), 117.68 (d, J = 29.3 Hz, C<sub>5</sub>), 102.79 (d, J = 24.2 Hz, CH), 38.83 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3065, 2938, 1497, 1410, 1278, 1253, 1134, 878, 771, 696.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>14</sub>H<sub>11</sub>FN<sub>2</sub> [M+H] <sup>+</sup>: 227.0983, found 227.0979.

## 5-chloro-1-methyl-3-phenyl-1*H*-indazole 54e

Compound **54e** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as oil colorless (59%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.98 (d, J = 0.9 Hz, 1H, H<sub>4</sub>), 7.91 (d, J = 1.3 Hz, 2H, H<sub>Ar</sub>), 7.50 (t, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.42 – 7.33 (m, 3H, H<sub>Ar</sub>), 4.11 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.47 (C), 140.08 (C), 133.20 (C), 129.05 (2×CH), 128.24 (C), 127.44 (2×CH), 127.11 (CH), 126.88 (CH), 122.56 (CH), 120.73 (CH), 110.45 (CH), 35.92 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3060, 2926, 2848, 1724, 1486, 1275, 821, 696.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>14</sub>H<sub>11</sub>ClN<sub>2</sub> [M+H] <sup>+</sup>: 243.0685, found 243.0683.

## 1-Methyl-3,7-diphenyl-1*H*-indazole-6-carbonitrile 55a

Compound 55a is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (20%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.06 (d, J = 8.5 Hz, 1H, H<sub>5</sub>), 7.90 (dd, J = 8.3, 1.4 Hz, 2H, H<sub>Ar</sub>), 7.58 – 7.45 (m, 9H, H<sub>Ar</sub>), 3.59 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 144.22 (C<sub>12</sub>), 139.43 (C), 138.70 (C), 132.51 (C), 131.35 (C), 129.77 (2×CH), 129.33 (2×CH), 129.01 (2×CH), 128.45, 127.61 (2×CH), 127.38 (CH), 124.20 (CH), 123.63 (CH), 121.20 (CH), 118.61 (CH), 110.86 (CH), 39.29 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3064, 2949, 2225, 1727, 1463, 1444, 1267, 758, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{15}N_3$  [M+H] +: 310.1341, found 310.1338.

Melting Point: 119-121 °C.

## 5-(Trifluoromethyl)-1-methyl-3,7-diphenyl-1*H*-indazole 55b

Compound **55b** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (20%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.30 (dd, J = 1.6, 0.9 Hz, 1H, H<sub>6</sub>), 7.95 (d, J = 6.9 Hz, 2H, H<sub>Ar</sub>), 7.65 – 7.43 (m, 9H, H<sub>Ar</sub>), 3.73 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 145.15 (C), 140.11(C), 137.36 (C), 132.55 (C), 129.75 (2×CH), 128.98 (2×CH), 128.42 (CH), 128.36, 128.27 (2×CH), 127.66 (2×CH), 126.90 (CH), 124.63 ( $q_{Cq-F}$ ,  $J^I = 273$  Hz,  $C_{12}$ ), 124.46 ( $q_{CH-F}$ ,  $J^3 = 3.1$  Hz,  $C_{6}$ ), 123.26 ( $q_{Cq-CF}$ ,  $J^2 = 32.7$  Hz,  $C_{5}$ ), 121.98 (CH), 118.77 ( $q_{Cq-CF}$ ,  $J^2 = 32$  Hz,  $C_{5}$ ), 118.41 ( $q_{CH-F}$ ,  $J^3 = 4.04$  Hz,  $C_{4}$ ), 39.26 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3062, 1617, 1316, 1302, 1260, 1107, 889, 758, 696, 649.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{15}F_3N_2$  [M+H]  $^+$ : 353.12,62, found 353.1260.

Melting Point: 102-104 °C.

## Methyl 1-methyl-3,7-diphenyl-1*H*-indazole-5-carboxylate 55c

Compound 55c is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (17%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.74 (d, J = 1.5 Hz, 1H, H<sub>4</sub>), 7.94 (d, J = 1.4 Hz, 2H, H<sub>Ar</sub>), 7.59 – 7.43 (m, 9H, H<sub>Ar</sub>), 3.95 (s, 3H, NCH<sub>3</sub>), 3.69 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.40 ( $C_{12}$ ), 145.89 (C), 141.16 (C), 138.04 (C), 132.88 (C), 130.03 (2×CH), 129.11 (2×CH), 128.91 (C), 128.56 (C), 128.38 (2×CH), 128.30 (C), 127.94 (2×CH), 126.12 (CH), 123.96 (CH), 123.21 (CH), 122.74 (CH), 52.28 (CCH<sub>3</sub>), 39.44 (CCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3061, 2947, 2849, 1707, 1601, 1244, 1209, 761, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{22}H_{18}N_2O_2$  [M+H]  $^+$ : 343.1442, found 343.1441.

Melting Point: 151-153 °C.

## 5-Fluoro-1-methyl-3,7-diphenyl-1*H*-indazole 55d

Compound **55d** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (5%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.05 (dd, J = 8.5, 2 Hz, 2H,  $H_{Ar}$ ), 7.59 – 7.39 (m, 8H,  $H_{Ar}$ ), 7.26 (dd, J = 8.9, 2.4 Hz, 1H,  $H_6$ ), 7.15 (dd, J = 8.7, 2.4 Hz, 1H,  $H_4$ ), 4.20 (s, 3H, C $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.73 (C), 156.36 (C), 143.65 (d, J = 6.06 Hz, C<sub>6</sub>), 138.06 (C), 136.54 (C), 134.55 (C), 133.18 (C), 129.48 (2×CH), 128.82 (2×CH), 127.88 (2×CH), 127.55 (d, J = 9.09 Hz, C<sub>4</sub>), 127.27 (2×CH), 122.40 (d, J = 10.1 Hz, CH), 117.40 (d, J = 27.3 Hz, C<sub>5</sub>), 104.00 (d, J = 24.2 Hz, C<sub>5</sub>), 39.28 (CH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3054, 2959, 1961, 1491, 1385, 1140, 860, 756, 697.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>20</sub>H<sub>15</sub>FN<sub>2</sub> [M+H] <sup>+</sup>: 303.1290, found 303.1292.

Melting Point: 142-144 °C.

## 1-Methyl-5-nitro-3-phenyl-7-p-tolyl-1H-indazole 56

Method A: compound **56** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (64%).

Method B: compound **56** is prepared according to the general procedure **H** using indazole **61b** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (58%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 8.92 (d, J = 2.1 Hz, 1H, **H**<sub>4</sub>), 8.12 (d, J = 2.1 Hz, 1H, **H**<sub>6</sub>), 7.92 (d, J = 6.7 Hz, 2H, **H**<sub>Ar</sub>), 7.59 – 7.29 (m, 7H, **H**<sub>Ar</sub>), 3.71 (s, 3H, NC**H**<sub>3</sub>), 2.47 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.20 (C), 140.14 (C), 135.19 (C), 135.11 (C), 128.57 (C), 125.91 (2×CH), 125.33 (C), 125.21 (2×CH), 125.17 (2×CH), 124.65 (C), 123.76 2×CH), 119.82 (CH), 117.24 (CH), 116.86 (CH), 112.41 (CH), 35.41 (NCH<sub>3</sub>), 17.58 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2925, 1727, 1596, 1333, 1073, 820, 745, 695.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_2$  [M+H]  $^+$ : 344.1395, found 344.1393.

**Melting Point:** 157 °C.

### 1-Methyl-4-nitro-3-phenyl-7-p-tolyl-1H-indazole 57a

Method A: compound **57a** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (65%).

Method B: compound **57a** is prepared according to the general procedure **H** using indazole **61a** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (55%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 7.87 (d, J = 7.5 Hz, 1H, **H**<sub>5</sub>), 7.49 – 7.46 (m, 5H, **H**<sub>Ar</sub>), 7.40 – 7.36 (m, 4H, **H**<sub>Ar</sub>), 7.32 (d, J = 7.7 Hz, 1H, **H**<sub>6</sub>), 3.74 (s, 3H, NC**H**<sub>3</sub>), 2.51 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.69 (C), 142.31 (C), 140.67 (C), 138.86 (C), 133.95 (C), 133.47 (C), 132.18 (C), 129.35 (2×CH), 129.14 (2×CH), 128.43 (2×CH), 128.22 (CH), 128.08 (2×CH), 127.28 (CH), 117.70 (CH), 113.84 (CH), 39.71 (NCH<sub>3</sub>), 21.34 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2918, 2850, 1519, 1337, 1036, 1020, 815, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_2$  [M+H]  $^+$ : 344.1393, found 344.1393.

### 1-Methyl-6-nitro-3-phenyl-7-p-tolyl-1H-indazole 57b

Method A: compound **57b** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (63%).

Method B: compound **57b** is prepared according to the general procedure **H** using indazole **61c** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (53%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.05 (d, J = 8.8 Hz, 1H,  $H_5$ ), 7.89 (d, J = 7.0 Hz, 2H,  $H_{Ar}$ ), 7.64 (d, J = 8.8 Hz, 1H,  $H_4$ ), 7.53 (t, J = 7.4 Hz, 2H,  $H_{Ar}$ ), 7.48 – 7.41 (m, 1H,  $H_{Ar}$ ), 7.31 (s, 4H,  $H_{Ar}$ ), 3.52 (s, 3H, NCH<sub>3</sub>), 2.46 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.00 (C), 143.94 (C), 138.98 (C), 138.91 (C), 132.36 (C), 129.70 (2×CH), 129.13 (C), 129.01 (2×CH), 128.97 (2×CH), 128.44 (C), 127.56 (2×CH), 123.62 (CH), 121.04 (CH), 120.65 (CH), 116.20 (CH), 39.20 (NCH<sub>3</sub>), 21.38 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2922, 1525, 1357, 1264, 792, 818, 693.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_2$  [M+H]  $^+$ : 344.1396, found 344.1393.

**Melting Point:** 177 °C.

### 1-Methyl-3-phenyl-7-p-tolyl-1H-indazole-6-carbonitrile 57c

Method A: compound **57c** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (66%).

Method B: compound **57c** is prepared according to the general procedure **H** using indazole **61d** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (56%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.04 (d, J = 8.5 Hz, 1H, C<sub>5</sub>), 7.89 (d, J = 7.0 Hz, 2H, H<sub>Ar</sub>), 7.56 – 7.35 (m, 8H, H<sub>Ar</sub>), 3.68 – 3.56 (s, 3H, NCH<sub>3</sub>), 2.48 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 144.36 (C), 139.57 (C), 132.65 (C), 131.53 (C), 131.45 (C), 129.91 (2×CH), 129.47 (2×CH), 129.15 (2×CH), 128.59 (C), 127.75 (2×CH), 127.52 (C), 124.34 (C), 123.77 (CH), 121.34 (CH), 118.75 (CH), 111.00 (CH), 39.43 (NCH<sub>3</sub>), 21.60 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3027, 2921, 2225, 1463, 1262, 1019, 817, 764, 697.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{22}H_{17}N_3$  [M+H] +: 324.1498, found 324.1495.

**Melting Point:** 149 °C.

# 5-(Trifluoromethyl)-1-methyl-3-phenyl-7-p-tolyl-1H-indazole 57d

Method A: compound 57d is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (65%).

Method B: compound **57d** is prepared according to the general procedure **H** using indazole **61e** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (50%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.28 (s, 1H, **H<sub>4</sub>**), 7.94 (d, J = 7.1 Hz, 2H, **H<sub>6</sub>**), 7.57 (t, J = 7.5 Hz, 2H, **H<sub>Ar</sub>**), 7.51 – 7.45 (m, 2H, **H<sub>Ar</sub>**), 7.41 – 7.32 (m, 4H, **H<sub>Ar</sub>**), 3.74 (s, 3H, NC**H<sub>3</sub>**), 2.50 (s, 3H, C**H<sub>3</sub>**).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.08 (C), 141.24 (C), 139.23 (C), 135.38 (C), 133.60 (C), 130.60 (2×CH), 129.95 (2×CH), 129.37 (2×CH), 128.64 (2×CH), 127.98 (C), 125.65 (q<sub>Cq-F</sub>,  $J^I$  = 273 Hz, C<sub>12</sub>), 125.48 (q<sub>CH-F</sub>,  $J^S$  = 3.03 Hz, C<sub>6</sub>), 124.25 (q<sub>Cq-CF</sub>,  $J^S$  = 32.3 Hz, C<sub>5</sub>), 123.93 (q<sub>Cq-CF</sub>,  $J^S$  = 32 Hz, C<sub>5</sub>), 122.91 (CH), 119.19 (q<sub>CH-F</sub>,  $J^S$  = 4.04 Hz, C<sub>4</sub>), 40.27 (NCH<sub>3</sub>), 22.23 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2945, 1613, 1318, 1301, 1108, 888, 760, 699.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{22}H_{17}F_3N_2$  [M+H]  $^+$ : 367.1418, found 367.1416.

**Melting Point:** 136 °C.

# Methyl 1-methyl-3-phenyl-7-p-tolyl-1H-indazole-5-carboxylate 57e

Method A: compound **57e** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (64%).

Method B: compound **57e** is prepared according to the general procedure **H** using indazole **61f** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as white solid (51%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 8.72 (d, J = 1.8 Hz, 1H, **H<sub>4</sub>**), 7.94 (m, 3H, **H<sub>Ar</sub>**), 7.48 – 7.38 (m, 7H, **H<sub>Ar</sub>**), 3.94 (s, 3H, NC**H<sub>3</sub>**), 3.70 (s, 3H, OC**H<sub>3</sub>**), 2.46 (s, 3H, C**H<sub>3</sub>**).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.46 (CO), 145.84 (C), 144.78 (C), 138.13 (C), 135.05 (C), 132.93 (C), 129.89 (2×CH), 129.10 (2×CH), 129.05 (2×CH), 128.95 (C), 128.53 (C), 127.94 (2×CH), 126.19(C), 123.77 (CH), 123.20 (CH), 122.68 (CH), 52.26 (NCH<sub>3</sub>), 39.45 (OCH<sub>3</sub>), 21.45 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2918, 2849, 1706, 1433, 1247, 1209, 762, 695.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{23}H_{20}N_2O_2$  [M+H]  $^+$ : 357.1599, found 357.1597.

Melting Point: 138-140 °C.

## 5-Fluoro-1-methyl-3-phenyl-7-p-tolyl-1H-indazole 57f

Compound **57f** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a white solid (43%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, J = 7.2 Hz, 2H,  $H_{Ar}$ ), 7.60 (dd, J = 8.8, 2.3 Hz, 1H,  $H_6$ ), 7.50 (t, J = 7.6 Hz, 2H,  $H_{Ar}$ ), 7.42 – 7.24 (m, 5H,  $H_{Ar}$ ), 7.03 (dd, J = 9.3, 2.4 Hz, 1H,  $H_4$ ), 3.66 (s, 3H, NCH<sub>3</sub>), 2.45 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.58 (C), 156.20 (C), 143.50 (d, J = 6.06 Hz, C<sub>6</sub>), 137.90 (C), 137.72 (C), 136.39 (C), 134.39 (C), 133.03 (C), 130.16 (C), 129.33 (2×CH), 128.67 (2×CH), 127.85 (CH), 127.73 (2×CH), 127.40 (d, J = 9.09 Hz, C<sub>4</sub>), 127.12 (2×CH), 126.54 (CH), 117.25 (d, J = 27.2 Hz, C<sub>5</sub>), 39.12 (NCH<sub>3</sub>), 21.07 (CH<sub>3</sub>).

**IR** υ (**neat, cm**<sup>-1</sup>): 3066, 2921, 1489, 1262, 993, 823, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}FN_2$  [M+H]  $^+$ : 317.1449, found 317.1448.

Melting Point: 135-137 °C.

### 5-chloro-1-methyl-3-phenyl-7-p-tolyl-1H-indazole 57g

Compound **57g** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as Oil incolore (8%)

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.94 (d, J = 2.0 Hz, 1H, H<sub>6</sub>), 7.89 (dd, J = 8.3, 1.3 Hz, 2H, H<sub>Ar</sub>), 7.55 - 7.49 (m, 3H, H<sub>Ar</sub>), 7.43 (d, J = 7.1 Hz, 1H, H<sub>Ar</sub>), 7.36 - 7.31 (m, 3H, H<sub>Ar</sub>), 7.21 (d, J = 1.9 Hz, 1H, H<sub>4</sub>), 3.66 (s, 3H, NCH<sub>3</sub>), 2.46 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.58 (C), 138.30 (C), 138.23 (C), 134.61 (C), 133.16 (C), 131.05 (C), 129.75 (2×CH), 129.06 (2×CH), 128.62 (C), 128.26 (2×CH), 127.67 (2×CH), 126.40 (C), 125.24 (CH), 123.55 (CH), 119.41 (CH), 39.45 (NCH<sub>3</sub>), 21.45 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2922, 2851, 2388, 1728, 1482, 1261, 826, 698.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>21</sub>H<sub>17</sub>ClN<sub>2</sub> [M+H] <sup>+</sup>: 333.1451, found 333.1453.

### 7-(4-Methoxyphenyl)-1-methyl-5-nitro-3-phenyl-1*H*-indazole 58a

$$\begin{array}{c} & & & 11 \\ & & & & 10 \\ & & & & & 10 \\ & & & & & & 10 \\ & & & & & & & 10 \\ & & & & & & & & 10 \\ & & & & & & & & & 10 \\ & & & & & & & & & & & 10 \\ & & & & & & & & & & & & & 10 \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ &$$

Compound **58a** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (67%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.92 (d, J = 2.1 Hz, 1H,  $H_4$ ), 8.13 (d, J = 2.1 Hz, 1H,  $H_6$ ), 7.93 (d, J = 7.1 Hz, 2H,  $H_{Ar}$ ), 7.56 (t, J = 7.4 Hz, 2H,  $H_{Ar}$ ), 7.48 (t, J = 8 Hz,1H,  $H_{Ar}$ ), 7.39 (d, J = 8.7 Hz, 2H,  $H_{Ar}$ ), 7.05 (d, J = 8.7 Hz, 2H,  $H_{Ar}$ ), 3.91 (s, 3H, NCH<sub>3</sub>), 3.73 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.97 (C), 146.96 (C), 142.13 (C), 141.30 (C), 131.88 (C), 130.83 (2×CH), 129.10 (2×CH), 128.88 (C), 128.65 (C), 127.65 (2×CH), 126.47 (C), 122.85 (CH), 121.92 (CH), 117.78 (CH), 113.85 (2×CH), 55.38 (OCH<sub>3</sub>), 39.43 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2960, 1596, 1507, 1284, 1704, 1024, 790, 692.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_3$  [M+H]  $^+$ : 360.1342, found 360.1343.

**Melting Point:** 148-150 °C.

# $7\hbox{-}(4\hbox{-}(Trifluoromethyl)phenyl)\hbox{-}1\hbox{-}methyl\hbox{-}5\hbox{-}nitro\hbox{-}3\hbox{-}phenyl\hbox{-}1$$H-indazole~58b$

Compound **58b** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a green solid (65%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.98 (d, J = 2.1 Hz, 1H,  $H_6$ ), 8.16 (d, J = 2.1 Hz, 1H,  $H_4$ ), 7.93 (d, J = 7.2 Hz, 2H,  $H_{Ar}$ ), 7.82 (d, J = 8 Hz, 2H,  $H_{Ar}$ ), 7.64 (d, J = 8 Hz, 2H,  $H_{Ar}$ ), 7.58 (t, J = 7.2 Hz, 2H,  $H_{Ar}$ ), 7.50 (t, J = 7.4 Hz, 1H,  $H_{Ar}$ ), 3.72 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.28 (C), 142.06 (C), 140.58 (C), 140.29 (C), 131.57 (C), 131.30 (C), 130.15 (2×CH), 129.18 (2×CH), 129.09 (2×CH), 127.69 (2×CH), 125.50 ( $q_{CH-F}$ ,  $J^3 = 4.04$  Hz,  $C_{14}$ ), 125.01 ( $q_{Cq-CF}$ ,  $J^2 = 32$  Hz,  $C_{15}$ ), 123.81 ( $q_{Cq-F}$ ,  $J^I = 273$  Hz,  $C_{16}$ ), 122.88 (CH), 122.29 (CH), 118.73 (CH), 39.61 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3093, 2946, 1596, 1323, 1121, 1065, 842, 780.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{14}F_3N_3O_2$  [M+H]  $^+$ : 398.1110, found 398.1111.

**Melting Point:** 165-167 °C.

### Ethyl 4-(1-methyl-5-nitro-3-phenyl-1*H*-indazol-7-yl)benzoate 58d

Compound **58d** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (65%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.97 (d, J = 2.1 Hz, 1H, **H**<sub>6</sub>), 8.22 (d, J = 8.3 Hz, 2H, **H**<sub>Ar</sub>), 8.17 (d, J = 2.1 Hz, 1H, **H**<sub>4</sub>), 7.93 (d, J = 7.1 Hz, 2H, **H**<sub>Ar</sub>), 7.57 (dd, J = 7.8, 6.1 Hz, 4H, **H**<sub>Ar</sub>), 7.53 – 7.47 (m, 1H, **H**<sub>Ar</sub>), 4.46 (q, J = 7.1 Hz, 2H, C**H**<sub>2</sub>), 3.70 (s, 3H, NC**H**<sub>3</sub>), 1.46 (t, J = 7.1 Hz, 3H, C-C**H**<sub>3</sub>)

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.91 (C), 147.19 (C), 142.06 (C), 140.99 (C), 140.65 (C), 131.64 (C), 130.93 (C), 129.76 (2×CH), 129.64 (2×CH), 129.15 (2×CH), 129.03 (C), 127.68 (2×CH), 125.46 (C), 122.66 (CH), 122.20 (CH), 118.55 (CH), 61.35 (CH<sub>2</sub>), 39.56 (NCH<sub>3</sub>), 14.30 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3054, 2979, 1702, 1458, 1289, 1098, 870, 774, 689.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{23}H_{19}N_3O_4$  [M+H]  $^+$ : 401.1376, found 401.1380.

Melting Point: 197 °C.

### 1-methyl-5-nitro-3-phenyl-7-o-tolyl-1H-indazole 58e

Compound **58e** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (66%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.94 (dd, J = 9.7, 2.2 Hz, 2H,  $H_{Ar}$ ), 8.14 (dd, J = 8.7, 2.1 Hz, 1H,  $H_{Ar}$ ), 8.10 (d, J = 2.1 Hz, 1H,  $H_6$ ), 7.95 - 7.92 (m, 2H,  $H_{Ar}$ ), 7.59 - 7.28 (m, 5H,  $H_{Ar}$ ), 3.71 (s, 3H, NCH<sub>3</sub>), 3.58 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.17 (C), 142.43 (C), 141.25 (C), 138.48 (C), 136.99 (C), 133.75 (C), 130.54 (C), 130.32 (C), 129.74 (CH), 129.31 (2×CH), 129.10 (CH), 128.47 (CH), 127.86 (2×CH), 126.95 (CH), 126.15 (CH), 122.49 (CH), 118.34 (CH), 39.61 (NCH<sub>3</sub>), 20.31 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3065, 2945, 1597, 1527, 1330, 897, 694.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_2$  [M+H]  $^+$ : 344.1397, found 344.1393.

#### 1-methyl-5-nitro-3-phenyl-7-*m*-tolyl-1*H*-indazole 58f

Compound **58f** is prepared according to the general procedure **G**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as yellow oil (67%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.92 (d, J = 2.1 Hz, 1H, H<sub>6</sub>), 8.14 (d, J = 2.1 Hz, 1H, H<sub>4</sub>), 7.92 (dd, J = 8.4, 2.1 Hz, 2H, H<sub>Ar</sub>), 7.60 – 7.24 (m, 7H, H<sub>Ar</sub>), 3.71 (s, 3H, NCH<sub>3</sub>), 2.46 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.12 (C), 142.26 (C), 141.18 (C), 138.45 (C), 136.60 (C), 132.05 (C), 130.52 (C), 129.62 (C), 129.28 (2×CH), 129.06 (CH), 128.45 (CH), 127.83 (2×CH), 127.01 (CH), 126.93 (CH), 122.82 (CH), 122.10 (CH), 118.06 (CH), 39.59 (NCH<sub>3</sub>), 21.60 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3055, 2918, 1598, 1525, 1330, 1077, 743, 680.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{21}H_{17}N_3O_2$  [M+H]  $^+$ : 344.1396, found 344.1393.

#### 5-Nitro-1-phenyl-1*H*-indazole 59

Compound 59a is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (88%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.79 (dd, J = 2.1 Hz, J = 0.6 Hz, 1H,  $\mathbf{H_4}$ ), 8.41 (d, J = 0.8 Hz, 1H,  $\mathbf{H_3}$ ), 8.31 (dd, J = 9.3 Hz, J = 2.1 Hz, 1H,  $\mathbf{H_6}$ ), 7.77 (m, 1H,  $\mathbf{H_{Ar}}$ ), 7.68-7.74 (m, 2H,  $\mathbf{H_{Ar}}$ ), 7.55-7.63 (m, 2H,  $\mathbf{H_{Ar}}$ ), 7.42-7.50 (m, 1H,  $\mathbf{H_{Ar}}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.39 (C), 142.93 (C), 139.09 (C), 137.58 (CH), 129.84 (2×CH), 128.06 (C), 125.45 (2×CH), 123.21 (CH), 122.26 (CH), 119.08 (CH), 110.73 (CH).

IR v (neat, cm<sup>-1</sup>): 3053, 2714, 1498, 1342, 1257, 779, 747, 702.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_9N_3O_2$  [M+H] +: 240.0218, found 240.0221.

**Melting Point:** 180 °C.

### 5-Nitro-1,3-diphenyl-1*H*-indazole 60

Compound **59b** is prepared according to the general procedure G. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 95/0.5) as a yellow solid (65%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 9.04 (dd, J = 2.2, 0.6 Hz, 1H, H<sub>4</sub>), 8.32 (td, J = 9.3, 2.1 Hz, 1H, H<sub>Ar</sub>), 8.03 (dd, J = 8.2, 1.6 Hz, 2H, H<sub>Ar</sub>), 7.83 – 7.76 (m, 2H, H<sub>Ar</sub>), 7.62 – 7.44 (m, 5H, H<sub>Ar</sub>), 7.09 (dd, J = 2.1, 4.6 Hz, 2H, H<sub>Ar</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.77 (C), 143.28 (C), 142.23 (C), 139.16 (C), 131.71 (C), 129.93 (2×CH), 129.47 (C), 129.34 (2×CH), 128.12 (CH), 127.98 (2×CH), 125.97 (CH), 123.55 (2×CH), 122.40 (CH), 119.62 (CH), 111.12 (CH).

IR v (neat, cm<sup>-1</sup>): 3063, 2621, 2283, 2162, 2049, 1498, 1336, 1079, 749, 690.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{13}N_3O_2$  [M+H]  $^+$ : 316.1081, found 316.1080.

**Melting Point:** 158 °C.

#### 3-bromo-1-methyl-4-nitro-1*H*-indazole 62a

Compound **62a** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (69%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>) δ** 8.17 (d, J = 7.7 Hz, 1H, **H**<sub>7</sub>), 7.98 (d, J = 8.4 Hz, 1H, **H**<sub>5</sub>), 7.66 (t, J = 8.0 Hz, 1H, **H**<sub>6</sub>), 4.18 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 143.93 (C), 142.25 (C), 127.61 (CH), 119.49 (CH), 118.34 (C), 118.26 (CH), 113.37 (C), 37.18 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3075, 1617, 1522, 1336, 1085, 782.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 256.0791, found 256.0795.

Melting Point: 188-190 °C.

#### 3-bromo-1-methyl-5-nitro-1*H*-indazole 62b

Compound **62b** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a beige solid (91%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>) δ** 8.65 (s, 1H, **H<sub>4</sub>**), 8.42 (dd, J = 8.8, 2.0 Hz, 1H, **H<sub>6</sub>**), 7.96 (d, J = 8.8 Hz, 1H, **H<sub>7</sub>**), 4.15 (s, 3H, C**H<sub>3</sub>**).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 143.53 (C), 143.27 (C), 124.69 (C), 123.28 (CH), 122.51 (C), 118.13 (CH), 113.12 (CH), 36.85 (NCH<sub>3</sub>)

**IR** υ (neat, cm<sup>-1</sup>): 3072, 1614, 1518, 1331, 1083, 820, 787.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 256.0792, found 256.0795.

Melting Point: 196-198 °C.

### 3-bromo-1-methyl-6-nitro-1*H*-indazole 62c

Compound 62c is prepared according to the general procedure C. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (83%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>)** δ 8.69 (s, 1H, **H**<sub>7</sub>), 8.15 (dd, J = 8.8, 2.0 Hz, 1H, H<sub>5</sub>), 7.93 (d, <math>J = 8.8 Hz, 1H, H<sub>4</sub>), 4.17 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 147.93 (C), 140.52 (C), 129.24 (C), 123.01 (C), 121.86 (CH), 116.97 (CH), 109.89 (CH), 36.78 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3098, 1519, 1470, 1339, 1218, 1060, 876, 729.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>BrN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 256.0793, found 256.0795.

Melting Point: 184-186 °C.

## 3-bromo-1-methyl-1*H*-indazole-6-carbonitrile 62d

Compound **62c** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (73%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.63 (dd, J = 8.3, 0.7 Hz, 1H, **H**<sub>5</sub>), 8.17 (d, J = 0.7 Hz, 1H, **H**<sub>7</sub>), 7.76 (dd, J = 8.3, 1.1 Hz, 1H, **H**<sub>4</sub>), 4.19 (s, 3H, C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.53 (C), 138.15 (C), 127.93 (CH), 124.56 (C), 123.32 (CH), 120.29 (C), 116.33 (CH), 111.39 (CH), 36.97 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3053, 2228, 1474, 1340, 1224, 812.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>9</sub>H<sub>6</sub>BrN<sub>3</sub> [M+H] <sup>+</sup>: 235.9814, found 235.9817.

Melting Point: 201-203 °C.

## 3-bromo-1-methyl-5-(trifluoromethyl)-1*H*-indazole 62e

Compound **62e** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (79%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.35 (s, 1H, H<sub>4</sub>), 7.83 (d, J = 8.8 Hz, 1H, H<sub>6</sub>), 7.68 (d, J = 8.8 Hz, 1H, H<sub>7</sub>), 4.15 (s, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.66 (C), 136.84 (C), 126.75 ( $q_{Cq-F}$ ,  $J^I = 273$  Hz,  $C_8$ ), 124.38 ( $q_{Cq-CF}$ ,  $J^2 = 32.3$  Hz,  $C_5$ ), 124.11 (C), 123.74 ( $q_{Cq-CF}$ ,  $J^2 = 32.3$  Hz,  $C_5$ ), 123.83 ( $q_{CH-F}$ ,  $J^3 = 3.8$  Hz,  $C_4$ ), 120.32 ( $q_{CH-F}$ ,  $J^3 = 4$  Hz,  $C_6$ ), 110.53 (CH), 36.94 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3272, 2921, 2850, 1627, 1260, 112, 816.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>9</sub>H<sub>6</sub>BrF<sub>3</sub>N<sub>2</sub> [M+H] <sup>+</sup>: 278.9730, found 278.9739.

Melting Point: 115-117 °C.

## Methyl 3-bromo-1-methyl-1H-indazole-5-carboxylate 62f

Compound **62f** is prepared according to the general procedure **C**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (75%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, J = 8.8 Hz, 2H,  $H_{Ar}$ ), 7.40 (d, J = 8.8 Hz, 1H,  $H_7$ ), 4.10 (s, 3H, NCH<sub>3</sub>), 3.95 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.86 (CO), 145.51 (C), 136.45 (C), 129.03 (C), 126.57 (CH), 125.64 (C), 123.75 (CH), 110.59 (CH), 54.01 (OCH<sub>3</sub>), 37.61 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2946, 1702, 1620, 1430, 1243, 1097, 757.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{10}H_9BrN_2O_2$  [M+H]  $^+$ : 268.9918, found 268.9920.

**Melting Point:** 136-138 °C

## 2-methyl-2*H*-indazole 63a

Compound **63a** is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (93%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>)** δ 8.29 (s, 1H,  $\mathbf{H}_3$ ), 7.66 (d, J = 8.4 Hz, 1H,  $\mathbf{H}_7$ ), 7.56 (d, J = 8.5 Hz, 1H,  $\mathbf{H}_4$ ), 7.19 (t, J = 7.5 Hz, 1H,  $\mathbf{H}_6$ ), 6.99 (t, J = 7.5 Hz, 1H,  $\mathbf{H}_5$ ), 4.14 (s, 3H, NC $\mathbf{H}_3$ ).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 148.76 (C), 125.87 (CH), 125.05 (CH), 122.29 (C), 121.48 (CH), 121.06 (CH), 117.38 (CH), 40.61 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3416, 2932, 1730, 1628, 1517, 1386, 1300, 1159, 1009.

**HRMS** (**ESI**+): Exact mass calcd for  $C_8H_8N_2$  [M+H]  $^+$ : 133.0766, found 133.0763.

**Melting Point:** 55-57 °C.

### 2-methyl-4-(nitro)-2H-indazole 63b

Compound 63b is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (89%).

<sup>1</sup>**H NMR (400 MHz, DMSO-d<sub>6</sub>) δ** 8.84 (s, 1H, **H**<sub>3</sub>), 8.16 (m, 2H, **H**<sub>5</sub>, **H**<sub>7</sub>), 7.46 (t, J = 8.0 Hz, 1H, **H**<sub>6</sub>), 4.26 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 149.91 (C), 140.59 (C), 126.69 (CH), 126.19 (CH), 125.05(CH), 120.98 (CH), 114.74 (C), 41.19 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2927, 1522, 1338, 1280, 1153, 783.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 177.0538, found 177.0530.

Melting Point: 100-102 °C.

### 2-methyl-5-(nitro)-2*H*-indazole 63c

Compound 63c is prepared according to the general procedure I. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (90%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 8.86 (d, J = 2.1 Hz, 1H, H<sub>4</sub>), 8.74 (s, 1H, H<sub>3</sub>), 7.97 (dd, J = 9.5, 2.1 Hz, 1H, H<sub>6</sub>), 7.74 (d, J = 9.5 Hz, 1H, H<sub>7</sub>), 4.22 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 149.77 (C), 142.47 (C), 130.54 (CH), 121.00 (CH), 120.68 (CH), 120.11 (CH), 118.45 (C), 41.30 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 1613, 1513, 1493, 1456, 1332, 1202, 1066, 791, 744.

**HRMS** (**ESI**+): Exact mass calcd for  $C_8H_7N_3O_2$  [M+H]  $^+$ : 177.0538, found 177.0534.

Melting Point: 127-129 °C.

#### 2-methyl-6-(nitro)-2H-indazole 63d

Compound 63d is prepared according to the general procedure I. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (87%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 8.58 (s, 2H, H<sub>3</sub>, H<sub>7</sub>), 7.94 (d, J = 9.1 Hz, 1H, H<sub>4</sub>), 7.78 (dd, J = 9.1, 1.9 Hz, 1H, H<sub>5</sub>), 4.25 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 146.58 (C), 146.36 (C), 126.97 (C), 124.94 (CH), 123.12 (CH), 115.21 (CH), 115.12 (CH), 41.49 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 1619, 1560, 1527, 1341, 1301, 1162, 1062, 824, 731.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>N<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 177.0538, found 177.0532.

Melting Point: 158-160 °C.

### 2-methyl-7-(nitro)-2*H*-indazole 63e

$$N C_8H_7N_3O_2$$
 $MW: 177 \text{ g/mol}$ 

Compound 63e is prepared according to the general procedure I. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a yellow solid (91%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 8.73 (s, 1H, H<sub>3</sub>), 8.26 (m, 2H, H<sub>4</sub>, H<sub>6</sub>), 7.23 (t, J = 8.0 Hz, 1H, H<sub>5</sub>), 4.26 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 140.28 (C), 137.04 (C), 130.67 (CH), 128.47 (CH), 126.06 (CH), 125.33 (C), 120.34 (CH), 41.27(NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3094, 2952, 1622, 1514, 1321, 983, 840, 733.

**HRMS** (**ESI**+): Exact mass calcd for  $C_8H_7N_3O_2$  [M+H]  $^+$ : 177.0538, found 177.0532.

**Melting Point:** 144-146 °C.

#### 2-methyl-2H-indazole-6-carbonitrile 63f

$$N = \begin{cases} & 4 & 3 & 2 \\ & & N - & \\ & & N & \\ & & & 1 & \\ & & & MW: 157 \text{ g/mol} \end{cases}$$

Compound **63f** is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a beige solid (86%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 (s, 1H, H<sub>3</sub>), 7.98 (s, 1H, H<sub>7</sub>), 7.71 (d, J = 8.2 Hz, 1H, H<sub>5</sub>), 7.17 (d, J = 8.2 Hz, 1H, H<sub>4</sub>), 4.26 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.24 (CN), 124.61 (C), 124.52 (C), 123.59 (C), 122.36 (CH), 121.79 (CH), 119.81 (CH), 109.16 (CH), 40.97 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3120, 3065, 2218, 1328, 1160, 913, 816, 745.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>9</sub>H<sub>7</sub>N<sub>3</sub> [M+H] <sup>+</sup>: 158.0714, found 158.0712.

**Melting Point:** 122 °C.

#### 2-methyl-5-(trifluoromethyl)-2H-indazole 63g

Compound **63g** is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (95%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.01 (s, 1H, H<sub>3</sub>), 7.98 (s, 1H, H<sub>4</sub>), 7.77 (d, J = 9.1 Hz, 1H, H<sub>6</sub>), 7.43 (d, J = 9.1 Hz, 1H, H<sub>7</sub>), 4.24 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 149.51 (C), 127.6 (q,  $J^{1}_{Cq\text{-}F}$  = 273 Hz, C<sub>8</sub>), 125.49 (C), 124.36 (q,  $J^{2}_{Cq\text{-}CF}$  = 32.3 Hz, C<sub>5</sub>), 123.72 (q,  $J^{2}_{Cq\text{-}CF}$  = 32.3 Hz, C<sub>5</sub>), 122.00 (q,  $J^{3}_{CH\text{-}F}$  = 4 Hz, C<sub>6</sub>), 120.83 (CH), 119.00 (q,  $J^{3}_{CH\text{-}F}$  = 4 Hz, C<sub>4</sub>), 118.43 (CH), 40.76 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3128, 2964, 1338, 1320, 1135, 1093, 1045, 828.

**HRMS** (**ESI**+): Exact mass calcd for  $C_9H_7F_3N_2$  [M+H]  $^+$ : 201.0636, found 201.0634.

**Melting Point:** 92 °C.

#### 5-fluoro-2-methyl-2*H*-indazole 63h

$$F = \begin{pmatrix} 4 & 3 & 2 & & \\ 5 & & & N & & \\ 6 & & & N & & \\ 7 & & 1 & & & \\ & & & & MW: 150 \text{ g/mo} \end{pmatrix}$$

Compound **63h** is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a Light yellow solid (89%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 7.80 (s, 1H, **H**<sub>3</sub>), 7.64 (dd, J = 9.3, 4.6 Hz, 1H, **H**<sub>4</sub>), 7.18 (dd, J = 9.1, 2.1 Hz, 1H, **H**<sub>6</sub>), 7.06 (td, J = 9.3, 2.4 Hz, 1H, **H**<sub>7</sub>), 4.17 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.60 (C), 157.23 (C), 146.41 (C), 123.69 (d, J = 8.08 Hz, C<sub>6</sub>), 121.4 (d, J = 12.1 Hz, C<sub>4</sub>), 117.26 (d, J = 29.2 Hz, C<sub>5</sub>), 40.48 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3098, 2947, 1519, 1433, 1184, 845, 799, 769.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>7</sub>FN<sub>2</sub> [M+H] <sup>+</sup>: 151.0667, found 151.0666.

**Melting Point:** 40-42 °C.

## 5-methoxy-2-methyl-2*H*-indazole 63i

Compound **63i** is prepared according to the general procedure **I**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as yellow oil (96%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 8.16 (s, 1H, H<sub>3</sub>), 7.52 (d, J = 9.1 Hz, 1H, H<sub>7</sub>), 6.88 (d, J = 1.8 Hz, 1H, H<sub>4</sub>), 6.66 (dd, J = 9.1, 1.8 Hz, 1H, H<sub>6</sub>), 4.06 (s, 3H, NCH<sub>3</sub>), 4.01 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 158.47 (C), 149.74 (C), 125.10 (C), 121.87 (C), 117.67 (C), 115.90 (C), 95.10 (C), 55.62 (OCH<sub>3</sub>), 40.33 (NCH<sub>3</sub>).

**IR** υ (**neat, cm**<sup>-1</sup>): 3010, 2940, 1630, 768.15.

**HRMS** (**ESI**+): Exact mass calcd for  $C_9H_{10}N_2O$  [M+H]  $^+$ :163.0873, found 163.0877.

#### (E)-ethyl 3-(2-methyl-2H-indazol-3-yl)acrylate 64

Compound 64 is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (87%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.90 (d, J = 15.8 Hz, 1H,  $H_8$ ), 7.86 (dt, J = 8.4, 1.2 Hz, 1H,  $H_7$ ), 7.75 (dt, J = 8.6, 1.0 Hz, 1H,  $H_4$ ), 7.35 (ddd, J = 8.6, 6.7, 1.2 Hz, 1H,  $H_6$ ), 7.24 (ddd, J = 8.3, 6.7, 1.1 Hz, 1H,  $H_4$ ), 6.65 (d, J = 15.9 Hz, 1H,  $H_9$ ), 4.33 (q, J = 7.1 Hz, 2H, OC $H_2$ ), 4.28 (s, 3H, NC $H_3$ ), 1.38 (t, J = 7.1 Hz, 3H, C-C $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.53 (CO), 148.70 (C), 130.76 (CH), 130.00 (C), 127.03 (C), 124.70 (CH), 122.08 (CH), 120.58 (CH), 119.30 (CH), 118.85 (CH), 61.51(CH<sub>2</sub>), 39.33 (NCH<sub>3</sub>), 14.99 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2984, 1709, 1627, 1284, 1014, 843, 749.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{14}N_2O_2$  [M+H]  $^+$ : 231.1124, found 231.1128.

Melting Point: 88 °C.

#### (E)-methyl 3-(2-methyl-2H-indazol-3-yl)acrylate 64a

$$\begin{array}{c} O \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Compound 64a is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (88%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 7.92 (d, J = 15.8 Hz, 1H,  $H_8$ ), 7.84 (dt, J = 8.4, 0.9 Hz, 1H,  $H_7$ ), 7.75 (dd, J = 8.5, 0.9 Hz, 1H,  $H_4$ ), 7.35 (ddd, J = 8.5, 4.3, 0.9 Hz, 1H,  $H_6$ ), 7.24 (ddd, J = 8.6, 4.3, 0.9 Hz, 1H,  $H_5$ ), 6.65 (d, J = 15.9 Hz, 1H,  $H_9$ ), 4.28 (s, 3H, NCH<sub>3</sub>), 3.86 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 167.92 (CO), 148.69 (C), 130.66 (CH), 130.22 (C), 127.03 (C), 124.77 (CH), 122.09 (CH), 120.51 (CH), 118.88 (CH), 118.75 (CH), 52.59 (OCH<sub>3</sub>), 39.33 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2950, 1713, 1629, 1614, 1293, 1169, 973, 746, 720.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{12}N_2O_2$  [M+H]  $^+$ : 217.0969, found 217.0971.

**Melting Point:** 82 °C.

#### (E)-tert-butyl 3-(2-methyl-2H-indazol-3-yl)acrylate 64b

Compound **64b** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (79%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.88 – 7.79 (m, 2H,  $\mathbf{H_{Ar}}$ ), 7.73 (dt, J = 8.6, 1.0 Hz, 1H,  $\mathbf{H_6}$ ), 7.34 (ddd, J = 8.6, 6.7, 1.1 Hz, 1H,  $\mathbf{H_4}$ ), 7.22 (ddd, J = 8.5, 6.5, 1.1 Hz, 1H,  $\mathbf{H_5}$ ), 6.59 (d, J = 15.9 Hz, 1H,  $\mathbf{H_9}$ ), 4.26 (s, 3H, NCH<sub>3</sub>), 1.57 (s, 9H, CH<sub>3tert-butyl</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.63 (C), 148.45 (C), 130.69 (CH), 128.89 (C), 126.76 (C), 124.26 (C), 121.76 (CH), 121.11 (CH), 120.47 (CH), 118.53 (CH), 81.51 (CH), 39.03 (NCH<sub>3</sub>), 28.65 (C-<sub>tert-butyl</sub>).

IR v (neat, cm<sup>-1</sup>): 2977, 1720, 1626, 1367, 1289, 1147, 745.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{18}N_2O_2$  [M+H]  $^+$ : 259.1438, found 259.1441.

Melting Point: 71-73 °C.

### (E)-benzyl 3-(2-methyl-2*H*-indazol-3-yl)acrylate 64c

Compound **64c** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as green oil (83%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 7.94 (d, J = 15.9 Hz, 1H,  $H_8$ ), 7.82 (dt, J = 8.4, 1.1 Hz, 1H,  $H_7$ ), 7.74 (dt, J = 8.6, 1.0 Hz, 1H,  $H_6$ ), 7.46 – 7.30 (m, 6H,  $H_{Ar}$ ), 7.23 (dd, J = 5.4, 3.9 Hz, 1H,  $H_5$ ), 6.68 (d, J = 15.9 Hz, 1H,  $H_9$ ), 5.29 (s, 2H, CH<sub>2</sub>), 4.25 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.83 (CO), 148.15 (C), 135.96 (CH), 130.12 (C), 129.96 (C), 128.76 (2×CH), 128.52 (2×CH), 126.51 (CH), 124.27 (CH), 121.60 (CH), 120.02 (CH), 118.35 (CH), 118.15 (CH), 66.82 (CH<sub>2</sub>), 38.80 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3032, 2945, 1728, 1285, 1196, 1158, 739, 696.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{16}N_2O_2$  [M+H]  $^+$ : 293.1288, found 293.1285.

#### (E)-butyl 3-(2-methyl-2H-indazol-3-yl)acrylate 64d

Compound **64d** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as green oil (77%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 7.88 (dd, J = 15.9, 5.3 Hz, 2H, **H**<sub>8</sub>, **H**<sub>7</sub>), 7.73 (dd, J = 8.6, 1.0 Hz, 1H, **H**<sub>4</sub>), 7.38 – 7.16 (m, 2H, **H**<sub>Ar</sub>), 6.63 (d, J = 15.9 Hz, 1H, **H**<sub>9</sub>), 4.32 – 4.18 (m, 5H, OCH<sub>2</sub>, NCH<sub>3</sub>), 1.79 – 1.65 (m, 2H, **H**<sub>12</sub>), 1.54 – 1.38 (m, 2H, **H**<sub>13</sub>), 0.98 (t, J = 7.3 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.08 (CO), 148.14 (C), 130.20 (CH), 129.43 (C), 126.47 (C), 124.14 (CH), 121.51 (CH), 120.04 (CH), 118.71 (CH), 118.29 (CH), 64.88 (OCH<sub>2</sub>), 38.76 (NCH<sub>3</sub>), 30.88 (C<sub>12</sub>), 19.30 (C<sub>13</sub>), 13.85 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2957, 2872, 1727, 1627, 1286, 1164, 1061, 962, 724.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{18}N_2O_2$  [M+H]  $^+$ : 259.1440, found 259.1441.

## (E)-2,2,2-trifluoroethyl 3-(2-methyl-2H-indazol-3-yl)acrylate 64e

Compound **64e** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (81%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 7.96 (d, J = 15.9 Hz, 1H, **H**<sub>8</sub>), 7.79 (dd, J = 15.9, 8.4 Hz, 2H, **H**<sub>Ar</sub>), 7.40 – 7.21 (m, 2H, **H**<sub>Ar</sub>), 6.64 (d, J = 15.9 Hz, 1H, **H**<sub>9</sub>), 4.64 (q, J = 8.4 Hz, 2H, OC**H**<sub>2</sub>), 4.26 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.31 (CO), 148.17 (C), 131.52 (CH), 129.69 (C), 126.63 (C), 124.74 (CH), 124.55 (CH), 121.8 (CH), 120.41 (q,  $J^{1}_{Cq-F}$  = 273 Hz, CF<sub>3</sub>), 119.89 (CH), 118.54 (CH), 115.57 (CH), 60.68 (q,  $J^{2}_{CH2-CF}$  = 32.3 Hz, OCH<sub>2</sub>), 38.83 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2951, 1753, 1627, 1274, 1151, 963, 742.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{11}F_3N_2O_2$  [M+H]  $^+$ : 285.08452, found 285.08454.

#### (E)-cyclohexyl 3-(2-methyl-2*H*-indazol-3-yl)acrylate 64f

Compound **64f** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a green solid (93%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 (t, J = 12.3 Hz, 2H,  $H_{Ar}$ ), 7.74 (d, J = 8.6 Hz, 1H,  $H_7$ ), 7.38 – 7.32 (m, 1H,  $H_{Ar}$ ), 7.28 – 7.20 (m, 1H,  $H_{Ar}$ ), 6.65 (d, J = 15.9 Hz, 1H,  $H_9$ ), 4.98 – 4.89 (m, 1H,  $H_{11}$ ), 4.28 (s, 3H, NCH<sub>3</sub>), 1.97 – 1.32 (m, 10H,  $5 \times CH_{2cyclohexyl}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.47 (CO), 148.18 (C), 130.33 (CH), 129.23 (C), 126.49 (C), 124.09 (CH), 121.53 (CH), 120.14 (CH), 119.43 (CH), 118.29 (CH), 73.40 (C<sub>11</sub>), 38.81 (NCH<sub>3</sub>), 31.91 (2×CH<sub>2</sub>), 25.54 (CH<sub>2</sub>), 23.99 (2×CH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 2930, 2855, 1716, 1281, 1161, 1150, 739, 706.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{20}N_2O_2$  [M+H]  $^+$ : 285.1596, found 285.1598.

Melting Point: 94-96 °C.

## (E)-N-(tert-butyl)-3-(2-methyl-2H-indazol-3-yl)acrylamide 64g

Compound 64g is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (75%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.85 (d, J = 16 Hz, 1H,  $H_8$ ), 7.75 (dd, J = 10, 7.5 Hz, 2H,  $H_{Ar}$ ), 7.32 (t, J = 10, 7.5 Hz, 1H,  $H_6$ ), 7.13 (t, J = 10, 7.5 Hz, 1H,  $H_5$ ), 6.59 (d, J = 16.0, 1H,  $H_9$ ), 5.71 (s, 1H, NH), 4.24 (s, 3H, NCH<sub>3</sub>), 1.47 (s, 9H, CH<sub>3tertbutyl</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.84 (CO), 148.16 (C), 130.75 (CH), 126.32 (C), 125.96 (C), 123.52 (CH), 122.81 (CH), 121.07 (CH), 120.07 (CH), 118.23 (CH), 51.98 (C<sub>11</sub>), 38.66 (NCH<sub>3</sub>), 29.02 (CH<sub>3 tertbutyl</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3263, 3066, 2966, 1611, 1547, 1336, 1287, 752.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{19}N_3O$  [M+H]  $^+$ : 258.1598, found 258.1601.

Melting Point: 193 °C.

#### 2-methyl-3-styryl-2H-indazole 64h

Compound **64h** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (57%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 7.91 (dt, J = 8.4, 1.0 Hz, 1H, **H**<sub>7</sub>), 7.69 (dt, J = 8.7, 1.0 Hz, 1H, **H**<sub>4</sub>), 7.59 – 7.52 (m, 2H, **H**<sub>Ar</sub>), 7.45 – 7.23 (m, 6H, **H**<sub>Ar</sub>), 7.20 – 7.11 (m, 1H, **H**<sub>Ar</sub>), 4.22 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.23 (C), 136.97 (C), 133.06 (C), 132.27 (CH), 129.03 (2×CH), 128.52 (2×CH), 126.65 (C), 126.24 (CH), 122.41 (CH), 120.53 (CH), 120.24 (CH), 117.70 (CH), 115.11 (CH), 38.40 (CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3056, 3026, 2919, 1628, 1446, 1291, 1056, 951, 738, 692.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{16}H_{14}N_2$  [M+H]  $^+$ : 235.1227, found 235.1230.

Melting Point: 98-100 °C.

#### (E)-3-(4-methoxystyryl)-2-methyl-2H-indazole 64i

Compound **64i** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (65%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.90 (d, J = 9 Hz, 1H,  $H_8$ ), 7.69 (d, J = 7.5 Hz, 1H,  $H_7$ ), 7.51 (d, J = 9 Hz, 1H,  $H_4$ ), 7.31 (dd, J = 7.5, 16 Hz, 2H,  $H_{Ar}$ ), 7.12 (dd, J = 7.5, 16 Hz, 2H,  $H_{Ar}$ ), 6.94 (d, J = 9 Hz, 1H,  $H_9$ ), 4.21 (s, 3H, NC $H_3$ ), 3.84 (s, 3H, OC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.41 (C), 143.40 (C), 142.27 (C), 131.24 (CH), 130.90 (2×CH), 128.66 (C), 127.41 (C), 122.95 (CH), 122.03 (CH), 121.73 (CH), 118.88 (CH), 115.20 (2×CH), 110.15 (CH), 56.34 (OCH<sub>3</sub>), 38.48 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2921, 2852, 1730, 1461, 1376, 1257, 1034, 743.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{16}N_2O$  [M+H]  $^+$ : 265.1333, found 265.1335.

#### (E)-3-(2-methyl-2*H*-indazol-3-yl)acrylonitrile 64j

Compound 64j is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a beige solid (51%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.75 (ddt, J = 11.9, 8.3, 1.0 Hz, 2H,  $H_{Ar}$ ), 7.60 (d, J = 16.4 Hz, 1H,  $H_8$ ), 7.43 – 7.28 (m, 2H,  $H_{Ar}$ ), 6.05 (d, J = 16.4 Hz, 1H,  $H_9$ ), 4.27 (s, 3H, NC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.40 (C), 135.39 (CH), 129.54 (C), 127.03 (C), 125.41 (CH), 119.54 (CH), 118.99 (CN), 118.51 (CH), 117.37 (CH), 96.38 (CH), 39.06 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2927, 2248, 2161, 1978, 1291, 1051, 738.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{11}H_9N_3$  [M+H] +: 184.0866, found 184.0869.

Melting Point: 157-159 °C.

#### (E)-ethyl 3-(2-methyl-4-nitro-2*H*-indazol-3-yl)acrylate 64k

Compound 64k is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (78%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.18 (d, J = 16.4 Hz, 1H,  $H_8$ ), 8.11 – 7.98 (m, 2H,  $H_{Ar}$ ), 7.38 (t, J = 7.5 Hz, 1H,  $H_6$ ), 6.03 (d, J = 16.4 Hz, 1H,  $H_9$ ), 4.35 – 4.24 (m, 5H, NC $H_3$ , OC $H_2$ ), 1.34 (t, J = 7.5 Hz, 3H, C-C $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.68 (CO), 149.34 (C), 142.37 (C), 132.13 (CH), 130.64 (C), 125.61 (C), 125.58 (CH), 124.73 (CH), 122.28 (CH), 113.28 (CH), 61.30 (OCH<sub>2</sub>), 40.76 (NCH<sub>3</sub>), 14.41 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3097, 2976, 1702, 1509, 1337, 1273, 1241, 1039, 982, 819, 738.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{13}N_3O_4$  [M+H]  $^+$ : 276.0977, found 276.0979.

Melting Point: 112-114 °C.

#### (E)-ethyl 3-(2-methyl-5-nitro-2*H*-indazol-3-yl)acrylate 64l

Compound **64l** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (71%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.88 (dd, J = 2.1, 0.8 Hz, 1H, **H**<sub>4</sub>), 8.18 (dd, J = 9.4, 2.1 Hz, 1H, **H**<sub>7</sub>), 7.91 (d, J = 16.0 Hz, 1H, **H**<sub>8</sub>), 7.81 (dd, J = 9.4, 0.7 Hz, 1H, **H**<sub>6</sub>), 6.77 (d, J = 16.0 Hz, 1H, **H**<sub>9</sub>), 4.41 – 4.31 (m, 5H, NCH<sub>3</sub>, OCH<sub>2</sub>), 1.41 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.19 (CO), 149.37 (C), 144.44 (C), 134.25 (CH), 128.08 (C), 122.32 (C), 120.98 (CH), 119.78 (CH), 119.29 (CH), 118.73 (CH), 61.52 (OCH<sub>2</sub>), 39.43 (NCH<sub>3</sub>), 14.45 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3113, 2989, 1705, 1336, 1181, 1003, 903, 791, 688.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{13}N_3O_4$  [M+H]  $^+$ : 276.0976, found 276.0979.

**Melting Point:** 146 °C.

## (E)-ethyl 3-(2-methyl-6-nitro-2*H*-indazol-3-yl)acrylate 64m

$$O_{2N}$$
 $O_{2N}$ 
 $O$ 

Compound **64m** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (72%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.71 (dd, J = 1.9, 0.7 Hz, 1H, **H**<sub>7</sub>), 8.08 – 7.87 (m, 1H, **H**<sub>Ar</sub>), 6.69 (d, J = 16.0 Hz, 1H, **H**<sub>8</sub>), 4.40 – 4.29 (m, 5H, NC**H**<sub>3</sub>, OC**H**<sub>2</sub>), 1.39 (t, J = 7.1 Hz, 3H, C-C**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.36 (CO), 146.88 (C), 146.46 (C), 131.44 (CH), 128.55 (C), 123.81 (C), 121.32 (CH), 121.13 (CH), 117.87 (CH), 116.08 (CH), 61.37 (OCH<sub>2</sub>), 39.66 (NCH<sub>3</sub>), 14.45 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3067, 2984, 1711, 1628, 1345, 1289, 1183, 1166, 1029, 969, 733.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{13}N_3O_4$  [M+H]  $^+$ : 276.0978, found 276.0979.

**Melting Point:** 207 °C.

## (E)-ethyl 3-(2-methyl-7-nitro-2*H*-indazol-3-yl)acrylate 64n

Compound **64n** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (85%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.37 (dd, J = 7.6, 0.7 Hz, 1H, **H**<sub>6</sub>), 8.22 (dd, J = 8.1, 0.9 Hz, 1H, **H**<sub>4</sub>), 7.93 (d, J = 16.1 Hz, 1H, **H**<sub>8</sub>), 7.35(t, J = 7.6 Hz, 1H, **H**<sub>5</sub>), 6.70 (d, J = 16.1 Hz, 1H, **H**<sub>9</sub>), 4.41 (s, 3H, NCH<sub>3</sub>), 4.35 (q, J = 7.1 Hz, 2H, OCH<sub>2</sub>), 1.39 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.13 (CO), 140.21 (C), 138.11 (C), 132.45 (CH), 128.39 (C), 128.00 (C), 125.38 (CH), 124.77 (CH), 122.36 (CH), 122.23 (CH), 61.46 (OCH<sub>2</sub>), 39.65 (NCH<sub>3</sub>), 14.45 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2988, 1719, 1633, 1516, 1286, 1187, 1170, 966, 901, 738.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{13}N_3O_4$  [M+H]  $^+$ : 276.0976, found 276.0979.

**Melting Point:** 187 °C.

# (E)-ethyl 3-(6-cyano-2-methyl-2H-indazol-3-yl)acrylate 640

Compound **64o** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (68%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.16 (d, J = 2.3 Hz, 1H,  $\mathbf{H}_7$ ), 7.92 (dd, J = 8.7, 16 Hz, 2H,  $\mathbf{H}_4$ ,  $\mathbf{H}_8$ ), 7.37 (dd, J = 8.7, 2.3 Hz, 1H,  $\mathbf{H}_5$ ), 6.67 (d, J = 16.0 Hz, 1H,  $\mathbf{H}_9$ ), 4.38 – 4.29 (m, 5H, NCH<sub>3</sub>, OCH<sub>2</sub>), 1.38 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.41 (CO), 146.59 (C), 131.33 (CH), 128.64 (C), 125.21 (C), 124.67 (CH), 122.79 (CH), 121.69 (CH), 120.91 (CN), 119.28 (CH), 110.05 (C), 61.33 (OCH<sub>2</sub>), 39.45 (NCH<sub>3</sub>), 14.45 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3059, 2984, 2220, 1698, 1629, 1293, 1169, 705, 662.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{13}N_3O_2$  [M+H]  $^+$ : 256.1078, found 256.1081.

**Melting Point:** 217 °C.

## (E)-ethyl 3-(2-methyl-5-(trifluoromethyl)-2H-indazol-3-yl)acrylate 64p

Compound **64p** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (76%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.16 (s, 1H, H<sub>4</sub>), 7.91 (d, J = 16.0 Hz, 1H, H<sub>8</sub>), 7.83 (d, J = 8.0 Hz, 1H, H<sub>6</sub>), 7.52 (d, J = 8.3 Hz, 1H, H<sub>7</sub>), 6.68 (d, J = 16.0 Hz, 1H, H<sub>9</sub>), 4.38 – 4.30 (m, 5H, NCH<sub>3</sub>, OCH<sub>2</sub>), 1.39 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.52 (CO), 148.71 (C), 132.04 (CH), 128.75 (C), 126.06 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>5</sub>), 125.74 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>5</sub>), 124.66 (q,  $J^1_{\text{Cq-F}} = 273 \text{ Hz}$ , C<sub>12</sub>), 122.69 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>6</sub>), 120.77 (C), 120.16 (CH), 119.37 (CH), 118.62 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>4</sub>), 61.32 (OCH<sub>2</sub>), 39.20 (NCH<sub>3</sub>), 14.47 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2977, 1696, 1625, 1322, 1293, 1094, 829, 684.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{13}F_3N_2O_2$  [M+H]  $^+$ : 299.1001, found 299.1002.

**Melting Point:** 107 °C.

#### (E)-ethyl 3-(5-fluoro-2-methyl-2*H*-indazol-3-yl)acrylate 64q

Compound 64q is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (73%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.85 (d, J = 15.9 Hz, 1H,  $H_8$ ), 7.68 (dd, J = 9.0, 4.5 Hz, 1H,  $H_7$ ), 7.40 (dd, J = 9, 2.5 Hz, 1H,  $H_4$ ), 7.11 (td, J = 9, 2.5 Hz, 1H,  $H_6$ ), 6.48 (d, J = 16 Hz, 1H,  $H_9$ ), 4.35 – 4.23 (m, 5H, NCH<sub>3</sub>, OCH<sub>2</sub>), 1.36 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.85 (CO), 161.24 (C), 158.82 (C), 145.34 (C), 130.49 (CH), 129.18 (C), 121.04 (d, J = 12 Hz, C<sub>5</sub>), 120.36 (CH), 118.59 (CH), 117.6 (d, J = 28 Hz, C<sub>6</sub>), 103.47 (d, J = 25 Hz, C<sub>4</sub>), 61.03 (OCH<sub>2</sub>), 38.94 (NCH<sub>3</sub>), 14.43 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2981, 1690, 1616, 1290, 1174, 1010, 837, 654.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{13}FN_2O_2$  [M+H]  $^+$ : 249.1031, found 249.1034.

Melting Point: 88 °C.

## (E)-ethyl 3-(5-methoxy-2-methyl-2H-indazol-3-yl)acrylate 64r

Compound 64r is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a Light yellow solid (90%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.91 (d, J = 15.9 Hz, 1H, H<sub>8</sub>), 7.64 (dd, J = 8.7, 1.2 Hz, 1H, H<sub>6</sub>), 7.10 – 7.00 (m, 2H, H<sub>Ar</sub>), 6.51 (d, J = 15.9 Hz, 1H, H<sub>9</sub>), 4.33 (q, J = 7.1 Hz, 2H, OCH<sub>2</sub>), 4.24 (s, 3H, NCH<sub>3</sub>), 3.90 (s, 3H, OCH<sub>3</sub>), 1.38 (t, J = 7.1 Hz, 1H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.25 (CO), 157.37 (C), 144.59 (C), 129.90 (CH), 129.40 (C), 122.11 (C), 120.75 (CH), 119.77 (CH), 117.20 (CH), 97.45 (CH), 60.96 (OCH<sub>2</sub>), 55.77 (OCH<sub>3</sub>), 38.86 (NCH<sub>3</sub>), 14.54 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2991, 1026, 1294, 1219, 1176, 1009, 845, 829, 655.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_{16}N_2O_3$  [M+H]  $^+$ : 261.1231, found 261.1234.

**Melting Point:** 128 °C.

## Ethyl (E)-3-(1-methyl-1*H*-indazol-3-yl)acrylate 65

Compound **65** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (67%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.96 (dd, J = 16.2, 7.5 Hz, 2H, H<sub>8</sub>, H<sub>7</sub>), 7.43 (m, 2H, H<sub>Ar</sub>), 7.30 – 7.21 (m, 1H, H<sub>Ar</sub>), 6.75 (d, J = 16.2 Hz, 1H, H<sub>9</sub>), 4.29 (q, J = 7.1 Hz, 2H, OCH<sub>2</sub>), 4.10 (s, 3H, NCH<sub>3</sub>), 1.36 (t, J = 7.1 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (**63** MHz, CDCl<sub>3</sub>) δ 167.29 (CO), 141.43 (C), 139.80 (C), 135.91 (CH), 126.83 (CH), 122.74 (CH), 122.18 (CH), 120.83 (C), 119.09 (CH), 109.66 (CH), 60.61 (OCH<sub>2</sub>), 36.02 (NCH<sub>3</sub>), 14.48 (C-CH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2977, 2931, 1694, 1365, 1299, 1158, 1040, 978, 748.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{14}N_2O_2$  [M+H]  $^+$ : 231.11283, found 231.11280.

**Melting Point:** 48–50 °C.

#### Methyl (E)-3-(1-methyl-1H-indazol-3-yl)acrylate 67a

Compound 67a is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (73%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (d, J = 16.2 Hz, 1H, H<sub>8</sub>), 7.92 (d, J = 8.2 Hz, 1H, H<sub>7</sub>), 7.48 – 7.39 (m, 2H, H<sub>Ar</sub>), 7.26 (t, J = 8.2 Hz, 1H, H<sub>6</sub>), 6.76 (d, J = 16.2 Hz, 1H, H<sub>9</sub>), 4.10 (s, 3H, NCH<sub>3</sub>), 3.84 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.75 (CO), 141.42 (C), 139.70 (C), 136.09 (CH), 126.85 (CH), 122.80 (CH), 122.22 (CH), 120.75 (C), 118.53 (CH), 109.68 (CH), 51.84 (OCH<sub>3</sub>), 36.03 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2955, 1716, 1637, 1295, 1254, 1062, 980, 754.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{12}N_2O_2$  [M+H]  $^+$ : 217.0972, found 217.0972.

**Melting Point:** 74-76 °C.

## Cyclohexyl (E)-3-(1-methyl-1*H*-indazol-3-yl)acrylate 67b

Compound 67b is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (78%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.98 (d, J = 16.2 Hz, 1H,  $H_8$ ), 7.95 (d, J = 8 Hz, 1H,  $H_7$ ), 7.46 – 7.39 (m, 2H,  $H_{Ar}$ ), 7.26 (t, J = 8.0 Hz, 1H,  $H_6$ ), 6.75 (d, J = 16.2 Hz, 1H,  $H_9$ ), 4.97 – 4.89 (m, 1H,  $H_{11}$ ), 4.10 (s, 3H, NC $H_3$ ), 1.95 – 1.77 (m, 4H,  $2 \times CH_{2cyclohexyl}$ ), 1.59 – 1.30 (m, 6H,  $3 \times CH_{2cyclohexyl}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.71 (CO), 141.44 (C), 139.93 (C), 135.65 (CH), 126.82 (CH), 122.69 (CH), 122.14 (CH), 120.93 (C), 119.81 (CH), 109.64 (CH), 72.81 (C<sub>11</sub>), 36.00 (NCH<sub>3</sub>), 31.88 (2×CH<sub>2cyclohexyl</sub>), 25.61 (CH<sub>2</sub>), 23.90 (2×CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 2935, 2857, 1697, 1638, 1295, 1254, 1171, 892, 741.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{20}N_2O_2$  [M+H]  $^+$ : 285.1597, found 285.1598.

Melting Point: 88-90 °C.

# (E)-3-(4-methoxystyryl)-1-methyl-1*H*-indazole 67c

Compound 67c is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (49%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.00 (d, J = 8.2 Hz, 1H, **H**<sub>7</sub>), 7.52 (d, J = 8.7 Hz, 2H, **H**<sub>Ar</sub>), 7.45 (d, J = 16.6 Hz, 1H, **H**<sub>8</sub>), 7.39 (dd, J = 12.3, 7.3 Hz, 2H, **H**<sub>Ar</sub>), 7.29 (d, J = 16.6 Hz, 1H, **H**<sub>9</sub>), 7.22 (m, 1H, **H**<sub>Ar</sub>), 6.92 (d, J = 8.7 Hz, 2H, **H**<sub>Ar</sub>), 4.07 (s, 3H, NC**H**<sub>3</sub>), 3.84 (s, 3H, OC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.55 (C), 142.54 (C), 141.41 (C), 130.39 (CH), 130.04 (C), 127.81 (2×CH), 126.55 (CH), 122.10 (CH), 121.17 (C), 120.87 (CH), 118.02 (CH), 114.34 (2×CH), 109.30 (C), 55.48 (OCH<sub>3</sub>), 35.63 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2932, 2839, 1726, 1511, 1220, 1023, 811.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{16}N_2O$  [M+H]  $^+$ : 265.1334, found 265.1335.

**Melting Point:** 56-58 °C.

## (E)-3-(1-methyl-1*H*-indazol-3-yl)acrylonitrile 67d

$$\begin{array}{c} \text{CN} \\ & & \\ & & \\ 5 \\ & & \\ 6 \\ & & \\ 7 \\ & & \\ N \\ 1 \\ & & \\ MW: 183 \text{ g/mol} \\ \end{array}$$

Compound **67d** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (45%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.80 (dt, J = 8.2, 1.0 Hz, 1H, H<sub>7</sub>), 7.67 (d, J = 16.7 Hz, 1H, H<sub>8</sub>), 7.49 – 7.43 (m, 2H, H<sub>Ar</sub>), 7.35 – 7.26 (m, 1H, H<sub>Ar</sub>), 6.21 (d, J = 16.7 Hz, 1H, H<sub>9</sub>), 4.12 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.45 (CH), 141.35 (C), 138.81 (C), 127.17 (C), 122.80 (CH), 122.51 (CH), 120.06 (CH), 118.66 (CN), 109.97 (CH), 96.42 (CH), 36.22 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3022, 2923, 2212, 1728, 1614, 1260, 975, 801, 736.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>11</sub>H<sub>9</sub>N<sub>3</sub> [M+H] <sup>+</sup>: 184.0869, found 184.0869.

Melting Point: 97-99 °C.

## Methyl (E)-3-(5-methoxy-1-methyl-1*H*-indazol-3-yl)acrylate 67e

Compound 67e is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (71%).

<sup>1</sup>**H NMR** (**400 MHz, CDCl**<sub>3</sub>) δ 7.97 (d, J = 16.2 Hz, 1H,  $H_8$ ), 7.31 (d, J = 9.0 Hz, 1H,  $H_7$ ), 7.20 (s, 1H,  $H_4$ ), 7.10 (d, J = 9.1 Hz, 1H,  $H_6$ ), 6.68 (d, J = 16.2 Hz, 1H,  $H_9$ ), 4.08 (s, 3H, NC $H_3$ ), 3.90 (s, 3H, OC $H_3$ ), 3.84 (s, 3H, OC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.93 (CO), 156.01 (C), 138.84 (C), 137.34 (C), 136.16 (CH), 123.42 (C), 119.14 (CH), 117.46 (CH), 110.74 (CH), 99.94 (CH), 55.97 (OCH<sub>3</sub>), 51.84 (OCH<sub>3</sub>), 36.26 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2948, 1714, 1636, 1498, 1218, 1048, 1037, 803, 696.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{14}N_2O_3$  [M+H]  $^+$ : 247.1079, found 247.1077.

Melting Point: 125-127 °C.

## Cyclohexyl (E)-3-(1-methyl-5-nitro-1H-indazol-3-yl)acrylate 67f

Compound 67f is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a orange solid (67%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.86 (s, 1H, H<sub>4</sub>), 8.30 (d, J = 9.1 Hz, 1H, H<sub>7</sub>), 7.89 (d, J = 16.3 Hz, 1H, H<sub>8</sub>), 7.48 (d, J = 9.2 Hz, 1H, H<sub>6</sub>), 6.79 (d, J = 16.3 Hz, 1H, H<sub>9</sub>), 4.93 (m, 1H, H<sub>11</sub>), 4.15 (s, 3H, NCH<sub>3</sub>), 1.85 – 1.33 (m, 10H,  $\mathbf{5} \times \mathbf{CH}_{2\text{cyclohexyl}}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.00 (CO), 143.22 (C), 143.02 (C), 142.64 (C), 133.54 (CH), 122.18 (CH), 121.96 (C), 121.73 (CH), 118.41 (CH), 110.04 (CH), 73.35 (CH), 36.48 (NCH<sub>3</sub>), 31.83 (2×CH<sub>2cyclohexyl</sub>), 25.53 (CH<sub>2</sub>), 23.91 (2×CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 3036, 2937, 2858, 1691, 1614, 1332, 1067, 827, 743.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{19}N_3O_4$  [M+H]  $^+$ : 330.1448, found 330.1448.

Melting Point: 109-111 °C.

## Methyl (E)-3-(1-methyl-5-nitro-1*H*-indazol-3-yl)acrylate 67g

Compound 67g is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (59%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.89 (d, J = 2.1 Hz, 1H, H<sub>4</sub>), 8.33 (dd, J = 9.2, 2.0 Hz, 1H, H<sub>6</sub>), 7.96 (d, J = 16.3 Hz, 1H, H<sub>8</sub>), 7.48 (d, J = 9.2, 1H, H<sub>7</sub>), 6.85 (d, J = 16.3 Hz, 1H, H<sub>9</sub>), 4.17 (s, 3H, NCH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.05 (CO), 143.32 (C), 143.04 (C), 142.55 (C), 142.46 (C), 134.01 (CH), 122.02 (C), 121.02 (CH), 118.33 (CH), 110.08 (CH), 52.11 (OCH<sub>3</sub>), 36.55 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3078, 2952, 1711, 1521, 1334, 1304, 103, 741, 664.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{11}N_3O_4$  [M+H]  $^+$ : 262.0823, found 262.0822.

**Melting Point:** 95-97 °C.

## Cyclohexyl (E)-3-(1-methyl-6-nitro-1*H*-indazol-3-yl)acrylate 67h

Compound **67h** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (65%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.37 (d, J = 2 Hz, 1H,  $H_7$ ), 8.07 (dd, J = 2, 9.0 Hz, 1H,  $H_5$ ), 8.01 (d, J = 9.0 Hz, 1H,  $H_4$ ), 7.91 (d, J = 16.2 Hz, 1H,  $H_8$ ), 6.76 (d, J = 16.2 Hz, 1H,  $H_9$ ), 4.90 (m, 1H,  $H_{11}$ ), 4.18 (s, 3H, NCH<sub>3</sub>), 2.15 – 1.22 (m, 10H,  $5 \times CH_{2\text{cyclohexyl}}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.88 (CO), 143.09 (C), 142.90 (C), 142.51 (C), 133.41 (CH), 122.06 (CH), 121.83 (C), 121.60 (CH), 118.28 (CH), 109.91 (CH), 73.22 (C<sub>11</sub>), 36.35 (NCH<sub>3</sub>), 31.70 (2×CH<sub>2cyclohexyl</sub>), 25.40 (CH<sub>2</sub>), 23.78 (2×CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 3107, 2935, 2858, 1723, 1516, 1341, 1222, 1127, 790, 730.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{19}N_3O_4$  [M+H]  $^+$ : 330.1449, found 330.1448.

## Methyl (E)-3-(1-methyl-6-nitro-1*H*-indazol-3-yl)acrylate 67i

$$O_{2}N$$
  $O_{2}N$   $O_{3}N$   $O_{4}N$   $O_{2}N$   $O_{2}N$   $O_{3}N$   $O_{4}N$   $O_{2}N$   $O_{4}N$   $O_{5}N$   $O_{6}N$   $O_{7}N$   $O$ 

Compound 67i is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (57%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.40 (d, J = 1.8 Hz, 1H,  $\mathbf{H}_7$ ), 8.12 (dd, J = 8.9, 1.9 Hz, 1H,  $\mathbf{H}_5$ ), 8.03 (d, J = 8.9 Hz, 1H,  $\mathbf{H}_4$ ), 7.96 (d, J = 16.2 Hz, 1H,  $\mathbf{H}_8$ ), 6.80 (d, J = 16.2 Hz, 1H,  $\mathbf{H}_9$ ), 4.22 (s, 3H, NCH<sub>3</sub>), 3.86 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.23 (CO), 146.82 (C), 140.28 (C), 134.33 (CH), 125.78 (C), 123.03 (CH), 121.53 (C), 120.30 (CH), 116.81 (CH), 106.49 (CH), 52.07 (OCH<sub>3</sub>), 36.65 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2919, 2850, 1698, 1636, 1519, 1344, 1264, 1001, 798, 733.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{11}N_3O_4$  [M+H]  $^+$ : 262.0822, found 262.0822.

Melting Point: 157-159 °C.

# Methyl (E)-3-(1-methyl-7-nitro-1*H*-indazol-3-yl)acrylate 67j

Compound 67j is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (69%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.18 (d, J = 8.0 Hz, 1H, H<sub>6</sub>), 8.13 (d, J = 8.0 Hz, 1H, H<sub>4</sub>), 7.94 (d, J = 16.2 Hz, 1H, H<sub>8</sub>), 7.33 (t, J = 7.9 Hz, 1H, H<sub>5</sub>), 6.83 (d, J = 16.2 Hz, 1H, H<sub>9</sub>), 4.26 (s, 3H, NCH<sub>3</sub>), 3.85 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.17 (CO), 140.50 (C), 135.75 (C), 133.50 (CH), 132.51 (C), 127.53 (CH), 126.92 (CH), 124.92 (CH), 121.21 (C), 120.82 (CH), 52.09 (OCH<sub>3</sub>), 41.57 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2955, 1712, 1519, 1331, 1305, 1255, 1179, 952, 730.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{11}N_3O_4$  [M+H]  $^+$ : 262.0820, found 262.0822.

**Melting Point:** 154 °C.

## Methyl (E)-3-(1-methyl-4-nitro-1*H*-indazol-3-yl)acrylate 67k

Compound 67k is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (54%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.26 (d, J = 15.7 Hz, 1H,  $H_8$ ), 8.05 (dd, J = 7.6, 0.8 Hz, 1H,  $H_5$ ), 7.75 (dd, J = 8.4, 0.8 Hz, 1H,  $H_7$ ), 7.51 (dd, J = 8.4, 7.6 Hz, 1H,  $H_6$ ), 6.79 (d, J = 15.7 Hz, 1H,  $H_9$ ), 4.19 (s, 1H, NCH<sub>3</sub>), 3.83 (s, 1H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.15 (CO), 140.48 (C), 133.49 (CH), 127.51 (C), 126.91 (C), 126.41 (CH), 124.90 (CH), 121.20 (CH), 120.80 (C), 118.96 (CH), 52.08 (OCH<sub>3</sub>), 41.56 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2958, 1734, 1523, 1338, 1255, 1091, 1014, 795.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{12}H_{11}N_3O_4$  [M+H]  $^+$ : 262.0821, found 262.0822.

Melting Point: 174-176 °C.

#### Dicyclohexyl 3,3'-(1-methyl-5-nitro-1*H*-indazole-3,7-diyl)(2E,2'E)-diacrylate 67l

Method A: compound **671** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (17%).

Method B: compound **671** is prepared according to the general procedure **J** using indazole **67f** as starting materiel. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (53%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.86 (d, J = 2.0 Hz, 1H, H<sub>4</sub>), 8.44 (d, J = 2.0 Hz, 1H, H<sub>6</sub>), 8.33 (d, J = 16.3 Hz, 1H, H<sub>15</sub>), 7.90 (d, J = 16.3 Hz, 1H, H<sub>8</sub>), 6.83 (d, J = 16.2 Hz, 1H, H<sub>16</sub>), 6.59 (d, J = 16.3 Hz, 1H, H<sub>9</sub>), 4.97 – 4.91 (m, 2H, H<sub>11</sub>, H<sub>18</sub>), 4.38 (s, 3H, NCH<sub>3</sub>), 1.94 – 1.26 (m, 20H,  $10 \times \text{CH}_{2\text{cyclohexyl}}$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.56 (2×CO), 143.05 (CH), 140.89 (C), 140.23 (C), 137.03 (CH), 126.11 (C), 125.16 (CH), 118.63 (C), 117.65 (CH), 115.95 (CH), 112.28 (CH), 110.11 (CH), 72.71 (C<sub>11</sub>, C<sub>18</sub>), 41.03 (NCH<sub>3</sub>), 31.98 (CH<sub>2cyclohexyl</sub>), 31.79 (CH<sub>2cyclohexyl</sub>), 25.65 (CH<sub>2cyclohexyl</sub>), 25.57 (CH<sub>2cyclohexyl</sub>), 24.04 (CH<sub>2cyclohexyl</sub>), 24.01 CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 2921, 2851, 1723, 1336, 1528, 1174 1012, 745.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{26}H_{31}N_3O_6$  [M+H]  $^+$ : 482.2287, found 482.2286.

# Methyl (E)-3-(1-methyl-5-nitro-3-phenyl-1*H*-indazol-7-yl)acrylate 68a

Compound **68a** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (61%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.63 (d, J = 2.1 Hz, 1H,  $H_4$ ), 8.33 (d, J = 2.1 Hz, 1H,  $H_6$ ), 7.94 (d, J = 16.0 Hz, 1H,  $H_{12}$ ), 7.84 (d, J = 7.0 Hz, 2H,  $H_{Ar}$ ), 7.63 – 7.50 (m, 3H,  $H_{Ar}$ ), 6.50 (d, J = 16 Hz, 1H,  $H_{13}$ ), 4.22 (s, 3H, NC $H_3$ ), 3.73 (s, 3H, OC $H_3$ ).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 167.35 (CO), 145.98 (C), 143.40 (C), 142.89 (CH), 133.90 (C), 131.80 (C), 131.06 (C), 130.37 (2×CH), 129.48 (CH), 127.47 (2×CH), 121.91 (C), 119.62 (CH), 119.35 (CH), 109.73 (CH), 51.81 (OCH<sub>3</sub>), 36.40 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2950, 1712, 1518, 1335, 1325, 1169, 766, 659.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{15}N_3O_4$  [M+H]  $^+$ : 338.1136, found 338.1135.

Melting Point: 232-234 °C.

## Cyclohexyl (E)-3-(1-methyl-5-nitro-3-phenyl-1*H*-indazol-7-yl)acrylate 68b

Compound **68b** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a red solid (69%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.62 (d, J = 2.7 Hz, 1H, H<sub>4</sub>), 8.31 (d, J = 2.1 Hz, 1H, H<sub>6</sub>), 7.91 (d, J = 16.0 Hz, 1H, H<sub>12</sub>), 7.85 (d, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.64 – 7.50 (m, 3H, H<sub>Ar</sub>), 6.48 (d, J = 16 Hz, 1H, H<sub>13</sub>), 4.79 (m, 1H, H<sub>15</sub>), 4.21 (s, 3H, NCH<sub>3</sub>), 1.73 – 1.23 (m, 10H, 5×CH<sub>2cyclohexyl</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 166.28 (CO), 146.05 (C), 142.70 (C), 133.98 (CH), 131.72 (C), 131.00 (CH), 130.23 (2×CH), 129.45 (C), 127.35 (2×CH), 122.68 (CH), 121.87 (CH), 120.71 (C), 119.44 (CH), 109.69 (CH), 72.67 (C<sub>15</sub>), 36.36 (NCH3), 31.74 (2×CH<sub>2cyclohexyl</sub>), 25.57 (CH<sub>2</sub>), 23.75 (2×CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 2926, 2857, 1698, 1519, 1450, 1333, 1257, 792, 768.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{23}H_{23}N_3O_4$  [M+H]  $^+$ : 406.1762, found 406.1761.

Melting Point: 170-172 °C.

#### Methyl (E)-3-(1-methyl-6-nitro-3-phenyl-1*H*-indazol-7-yl)acrylate 68c

Compound **68c** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (51%).

<sup>1</sup>H NMR (400 MHz, Acétone-d<sub>6</sub>) δ 8.42 (d, J = 16.1 Hz, 1H,  $\mathbf{H_{12}}$ ), 8.26 (d, J = 8.5 Hz, 1H,  $\mathbf{H_5}$ ), 7.99 (d, J = 7.7 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.57 (t, J = 8.1 Hz, 3H,  $\mathbf{H_{Ar}}$ ), 7.47 (t, J = 7.4 Hz, 1H,  $\mathbf{H_{11}}$ ), 6.70 (d, J = 16.4 Hz, 1H,  $\mathbf{H_{13}}$ ), 4.36 (s, 3H, NCH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, Acétone-d<sub>6</sub>) δ 166.35 (CO), 144.60 (C), 138.18 (CH), 133.43 (C), 129.95 (2×CH), 129.43 (C), 128.93 (C), 128.38 (2×CH), 125.86 (C), 125.47 (C), 125.32 (CH), 123.88 (CH), 119.08 (CH), 109.56 (CH), 52.48 (OCH<sub>2</sub>), 40.56 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2923, 2850, 1716, 1517, 1343, 1266, 1170, 732.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{15}N_3O_4$  [M+H]  $^+$ : 338.1133, found 338.1135.

#### Cyclohexyl (E)-3-(1-methyl-6-nitro-3-phenyl-1*H*-indazol-7-yl)acrylate 68d

Compound **68d** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellow oil (61%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.98 (d, J = 16.0 Hz, 1H,  $H_{12}$ ), 7.82 (d, J = 7.5 Hz, 1H,  $H_{5}$ ), 7.63 (d, J = 7.4 Hz, 1H,  $H_{4}$ ), 7.54 – 7.35 (m, 3H,  $H_{Ar}$ ), 7.30 – 7.16 (m, 2H,  $H_{Ar}$ ), 6.46 (d, J = 16.0 Hz, 1H,  $H_{13}$ ), 4.82 (m, 1H,  $H_{15}$ ), 4.15 (s, 3H, NCH<sub>3</sub>), 1.84 – 1.33 (m, 10H, 5×CH<sub>2cyclohexyl</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.24 (CO), 146.72 (C), 143.56 (C), 142.74 (CH), 139.80 (C), 133.83 (C), 130.99 (C), 130.12 (2×CH), 129.19 (CH), 127.18 (2×CH), 122.27 (CH), 120.42 (CH), 115.87 (C), 106.19 (CH), 72.62 (C<sub>15</sub>), 36.37 (NCH<sub>3</sub>), 31.69 (2×CH<sub>2cyclohexyl</sub>), 25.51 (CH<sub>2</sub>), 23.66 (2×CH<sub>2cyclohexyl</sub>).

IR v (neat, cm<sup>-1</sup>): 3067, 2933, 2856, 1705, 1519, 1343, 1260, 1174, 1014, 792, 732.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{23}H_{23}N_3O_4$  [M+H]  $^+$ : 406.1761, found 406.1761.

## Methyl (E)-3-(6-cyano-1-methyl-3-phenyl-1*H*-indazol-7-yl)acrylate 68e

Compound **68e** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as green oil (55%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.30 (d, J = 16.1 Hz, 1H,  $\mathbf{H_{12}}$ ), 8.05 (d, J = 8.4 Hz, 1H,  $\mathbf{H_5}$ ), 7.86 (d, J = 7.0 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.56 – 7.43 (m, 4H,  $\mathbf{H_{Ar}}$ ), 6.68 (d, J = 16.0 Hz, 1H,  $\mathbf{H_{13}}$ ), 4.32 (s, 3H, NCH<sub>3</sub>), 3.89 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.00 (CO), 144.85 (C), 138.43 (CH), 136.81 (C), 132.17 (C), 129.21 (2×CH), 128.87 (CH), 128.09 (C), 127.80 (2×CH), 124.92 (CH), 124.87 (CH), 124.34 (C), 123.11 (C), 118.51 (CH), 108.98 (CN), 52.42 (OCH<sub>3</sub>), 40.29 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2920, 2851, 2227, 1715, 1291, 1058, 1021, 753, 691.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{15}N_3O_2$  [M+H]  $^+$ : 318.1236, found 318.1237.

# Methyl (E)-3-(1-methyl-4-nitro-3-phenyl-1H-indazol-7-yl)acrylate 68f

Compound **68f** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (63%).

<sup>1</sup>**H NMR** (250 MHz, Acétone-d<sub>6</sub>) δ 8.28 (d, J = 8.5 Hz, 1H,  $\mathbf{H}_5$ ), 8.07 (d, J = 7.6 Hz, 1H,  $\mathbf{H}_6$ ), 7.98 (d, J = 7.6 Hz, 2H,  $\mathbf{H}_{Ar}$ ), 7.75 (dd, J = 8.5, 7.6 Hz, 2H,  $\mathbf{H}_{Ar}$ ), 7.60 (dd, J = 8.2, 7.6 Hz, 1H,  $\mathbf{H}_{Ar}$ ), 7.25 (d, J = 16.2 Hz, 1H,  $\mathbf{H}_{12}$ ), 6.44 (d, J = 16 Hz, 1H,  $\mathbf{H}_{13}$ ), 4.35 (s, 3H, NC $\mathbf{H}_3$ ), 3.59 (s, 3H, OC $\mathbf{H}_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.37 (CO), 142.87 (C), 142.62 (CH), 141.77 (C), 134.90 (C), 134.20 (C), 130.80 (CH), 129.58 (2×CH), 128.86 (2×CH), 126.20 (C), 125.81 (CH), 119.27 (CH), 115.67 (C), 114.94 (CH), 51.65 (OCH<sub>3</sub>), 36.38 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 2951, 1705, 1524, 1322, 1199, 1181, 980, 764 7.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{15}N_3O_4$  [M+H]  $^+$ : 338.1134, found 338.1135.

Melting Point: 186-188 °C.

## Methyl (E)-3-(1-methyl-3-phenyl-5-(trifluoromethyl)-1H-indazol-7-yl)acrylate 68g

Compound 68g is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (60%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.95 (dd, J = 16, 2.1 Hz, 2H, H<sub>12</sub>, H<sub>4</sub>), 7.81 (d, J = 2.1 Hz, 1H, H<sub>6</sub>), 7.65 (d, J = 7.5 Hz, 2H, H<sub>Ar</sub>), 7.58 – 7.47 (m, 3H, H<sub>Ar</sub>), 6.47 (d, J = 16 Hz, 1H, H<sub>13</sub>), 4.20 (s, 3H, NCH<sub>3</sub>), 3.72 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.37 (CO), 144.07 (C), 143.77 (C), 141.95 (CH), 133.86 (C), 132.62 (C), 131.05 (CH), 130.24 (2×CH), 129.06 (2×CH), 127.33 (CH), 124.82 (q,  $J^{1}_{Cq-F}$  Hz, C<sub>15</sub>), 123.79 (q,  $J^{2}_{Cq-CF}$  = 32.3 Hz, C<sub>5</sub>), 123.30 (q,  $J^{3}_{CH-F}$  = 4 Hz, C<sub>4</sub>), 122.56 (CH), 119.68 (q,  $J^{3}_{CH-F}$  = 4 Hz, C<sub>6</sub>), 119.32 (CH), 110.03 (C), 51.73 (OCH<sub>3</sub>), 36.12 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3055, 2951, 1725, 1634, 1312, 1261, 1245, 1112, 1056, 902, 764.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{15}F_3N_2O_2$  [M+H]  $^+$ : 361.1161, found 361.1158.

Melting Point: 113-115 °C.

## Methyl (E)-3-(5-fluoro-1-methyl-3-phenyl-1*H*-indazol-7-yl)acrylate 68h

Compound **68h** is prepared according to the general procedure J. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (49%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.98 (d, J = 16.0 Hz, 1H,  $H_{12}$ ), 7.79 (s, 1H,  $H_{4}$ ), 7.61 (s, 1H,  $H_{6}$ ), 7.53 – 7.36 (m, 3H,  $H_{Ar}$ ), 7.28 – 7.19 (m, 2H,  $H_{Ar}$ ), 6.47 (d, J = 16.0 Hz, 1H,  $H_{13}$ ), 4.15 (s, 3H, NCH<sub>3</sub>), 3.73 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.51 (CO), 159.63 (C), 157.26 (C), 144.03 (CH), 138.16 (C), 133.49 (d, J = 35 Hz, C<sub>5</sub>), 130.90 (C), 130.14 (2×CH), 128.66 (2×CH), 127.22 (CH), 118.91 (CH), 116.39 (CH), 110.45 (d, J = 10 Hz, C<sub>4</sub>), 105.22 (d, J = 24 Hz, C<sub>6</sub>), 51.72 (OCH<sub>3</sub>), 36.15 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3072, 2952, 1715, 1631, 1495, 1321, 1265, 1020, 880, 762.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{15}FN_2O_2$  [M+H]  $^+$ : 311.1192, found 311.1190.

Melting Point: 134-136 °C.

#### Methyl (E)-3-(Methyl 1-methyl-3-phenyl-1*H*-indazole-5-carboxylate-7-yl)acrylate 68i

Compound **68i** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as Oil incolore (57%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.73 (s, 1H,  $\mathbf{H_4}$ ), 8.44 (d, J = 15.6 Hz, 1H,  $\mathbf{H_{12}}$ ), 8.25 (s, 1H,  $\mathbf{H_6}$ ), 7.91 (d, J = 8.4 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.60 – 7.39 (m, 4H,  $\mathbf{H_{Ar}}$ ), 6.57 (d, J = 15.6 Hz, 1H,  $\mathbf{H_{13}}$ ), 4.39 (s, 3H, NCH<sub>3</sub>), 3.97 (s, 3H, OCH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.90 (CO), 166.51 (CO), 146.15 (C), 143.67 (CH), 140.95 (C), 133.40 (C), 129.52 (2×CH), 128.93 (CH), 128.12 (CH), 127.73 (2×CH), 125.48 (CH), 123.72 (C), 121.94 (CH), 118.76 (CH), 109.50 (C), 52.71 (OCH<sub>3</sub>), 52.14 (OCH<sub>3</sub>), 43.93 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3333, 2921, 2851, 1713, 1259, 1016, 795.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{20}H_{18}N_2O_4$  [M+H]  $^+$ : 351.1338, found 351.1339.

## 1-(2,4-dichlorobenzyl)-6-nitro-1*H*-indazole 71

Compound **71** is prepared according to the general procedure K. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a Light yellow solid (85%).

<sup>1</sup>**H NMR** (250 MHz, CDCl<sub>3</sub>) δ 8.39 (s, 1H,  $\mathbf{H}_3$ ), 8.20 (d, J = 8.6 Hz, 1H,  $\mathbf{H}_4$ ), 8.05 (s, 1H,  $\mathbf{H}_7$ ), 7.88 (s, 1H,  $\mathbf{H}_{13}$ ), 7.46 (d, J = 8.5 Hz, 1H,  $\mathbf{H}_5$ ), 7.16 (d, J = 8.1 Hz, 1H,  $\mathbf{H}_{11}$ ), 6.85 (d, J = 8.1 Hz, 1H,  $\mathbf{H}_{10}$ ), 5.74 (s, 2H, NCH<sub>2</sub>).

<sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>) δ 146.83 (C), 138.54 (C), 134.91 (C), 134.43 (C), 133.56 (CH), 132.03 (C), 129.93 (CH), 129.71 (CH), 127.68 (C), 127.28 (CH), 122.08 (CH), 115.89 (CH), 105.90 (CH), 50.12 (NCH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 3109, 1521, 1347, 1339, 1298, 1085, 852, 814, 728.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_9Cl_2N_3O_2$  [M+H]  $^+$ : 322.0143, found 322.0145.

Melting Point: 125-127 °C.

# $1\hbox{-}(2,\!4\hbox{-dichlorobenzyl})\hbox{-}6\hbox{-}(trifluoromethyl)\hbox{-}1H\hbox{-indazole }72$

Compound **72** is prepared according to the general procedure K. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (87%).

<sup>1</sup>**H NMR (400 MHz, CDCl<sub>3</sub>) δ** 8.15 (s, 1H, **H**<sub>3</sub>), 7.88 (d, J = 8.4 Hz, 1H, **H**<sub>4</sub>), 7.70 (s, 1H, **H**<sub>7</sub>), 7.44 (s, 1H, **H**<sub>14</sub>), 7.41 (d, J = 8.5 Hz, 1H, **H**<sub>5</sub>), 7.13 (d, J = 8.3 Hz, 1H, **H**<sub>12</sub>), 6.76 (d, J = 8.3 Hz, 1H, **H**<sub>11</sub>), 5.70 (s, 2H, NC**H**<sub>2</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.91 (C), 134.75 (C), 134.40 (C), 133.49 (C), 132.65 (CH), 130.70 (C), 129.85 (CH), 129.71 (CH), 129.13 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 128.81 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 127.77 (CH), 126.05 (CH), 124.46 (q,  $J^1_{\text{Cq-F}} = 273 \text{ Hz}$ , C<sub>8</sub>), 122.38 (CH), 117.75 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>5</sub>), 107.01 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>7</sub>), 49.94 (NCH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 3093, 1475, 1312, 1159, 1112, 1104, 1048, 835, 776.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_9Cl_2F_3N_2$  [M+H]  $^+$ : 345.0167, found 345.0168.

**Melting Point:** 76-78 °C.

## 2-(2,4-dichlorobenzyl)-6-nitro-2*H*-indazole 73

Compound 73 is prepared according to the general procedure K. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (10%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.70 (s, 1H,  $\mathbf{H}_3$ ), 8.10 (d, J = 8.4 Hz, 1H,  $\mathbf{H}_4$ ), 7.90 (s, 1H,  $\mathbf{H}_7$ ), 7.75 (s, 1H,  $\mathbf{H}_{13}$ ), 7.47 (d, J = 8.5 Hz, 1H,  $\mathbf{H}_5$ ), 7.26 (d, J = 8.2 Hz, 1H,  $\mathbf{H}_{11}$ ), 7.17 (d, J = 8.2 Hz, 1H,  $\mathbf{H}_{10}$ ), 5.75 (s, 2H, NCH<sub>2</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.26 (C), 146.89 (C), 135.83 (C), 134.45 (C), 131.51 (CH), 131.33 (C), 129.94 (CH), 128.08 (CH), 124.54 (C), 124.44 (CH), 121.72 (CH), 116.19 (CH), 115.81 (CH), 55.06 (NCH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 3124, 1527, 1334, 1311, 1102, 856, 819, 733.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{14}H_9Cl_2N_3O_2$  [M+H]  $^+$ : 322.0143, found 322.0145.

Melting Point: 151-153 °C.

## 2-(2,4-dichlorobenzyl)-6-(trifluoromethyl)-2H-indazole 74

Compound **74** is prepared according to the general procedure K. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (11%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.05 (s, 2H, H<sub>3</sub>, H<sub>7</sub>), 7.75 (d, J = 8.8 Hz, 1H, H<sub>4</sub>), 7.45 (d, J = 2.1 Hz, 1H, H<sub>14</sub>), 7.29 – 7.19 (m, 2H, H<sub>Ar</sub>), 7.06 (d, J = 8.3 Hz, 1H, H<sub>11</sub>), 5.71 (s, 2H, NCH<sub>2</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 147.75 (C), 135.52 (C), 134.21 (C), 131.87 (C), 131.17 (CH), 129.82 (C), 128.84 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 128.52 (q,  $J^2_{\text{Cq-CF}} = 32.2 \text{ Hz}$ , C<sub>6</sub>), 127.32 (q,  $J^1_{\text{Cq-F}} = 274 \text{ Hz}$ , C<sub>8</sub>), 124.05 (CH), 123.25 (CH), 123.21 (CH), 121.70 (CH), 118.05 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>5</sub>), 116.29 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>7</sub>), 54.70 (NCH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 3067, 1474, 1339, 1160, 1102, 1056, 1045, 816.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_9Cl_2F_3N_2$  [M+H]  $^+$ : 345.0166, found 345.0168.

**Melting Point:** 85-87 °C.

# Methyl (E)-3-(1-(2,4-dichlorobenzyl)-6-nitro-1*H*-indazol-3-yl)acrylate 75

Compound **75** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (65%).

<sup>1</sup>**H NMR** (**400 MHz, DMSO-** $d_6$ ) δ 8.90 (d, J = 1.7 Hz, 1H,  $H_7$ ), 8.35 (d, J = 8.9 Hz, 1H,  $H_4$ ), 8.02 (dd, J = 8.9, 1.7 Hz, 1H,  $H_5$ ), 7.80 (d, J = 16.2 Hz, 1H,  $H_{16}$ ), 7.64 (d, J = 1.9 Hz, 1H,  $H_{13}$ ), 7.35 (dd, J = 8.3, 1.9 Hz, 1H,  $H_{11}$ ), 7.02 (d, J = 8.3 Hz, 1H,  $H_{10}$ ), 6.75 (d, J = 16.2, 1H,  $H_{15}$ ), 5.92 (s, 2H, NC $H_2$ ), 3.75 (s, 3H, OC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ ) δ 167.21 (CO), 141.78(C), 140.12 (C), 139.53 (C), 137.64 (CH), 136.51 (C), 135.22 (C), 131.31 (CH), 131.42 (CH), 130.12 (C), 127.55 (CH), 126.73 (CH), 124.67 (C), 123.51 (CH), 118.96 (CH), 108.09 (CH), 52.19 (NCH<sub>2</sub>), 46.95 (OCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3081, 2946, 1719, 1319, 1153, 1110, 1036, 846.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{13}Cl_2N_3O_4$  [M+H]  $^+$ : 407.0523, found 407.0521.

Melting Point: 162-164 °C.

#### Methyl (E)-3-(1-(2,4-dichlorobenzyl)-6-(trifluoromethyl)-1H-indazol-3-yl)acrylate 76

Compound **76** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (69%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.11 (d, J = 15.8 Hz, 1H,  $H_{16}$ ), 8.05 (s, 1H,  $H_7$ ), 7.86 (s, 1H,  $H_{14}$ ), 7.83 (d, J = 8.5 Hz, 1H,  $H_4$ ), 7.48 (d, J = 4.3 Hz, 2H,  $H_{Ar}$ ), 7.39 (d, J = 8.4 Hz, 1H,  $H_{11}$ ), 6.30 (d, J = 15.8 Hz, 1H,  $H_{17}$ ), 5.73 (s, 2H, NCH<sub>2</sub>), 3.75 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.18 (CO), 140.76 (C), 139.16 (C), 138.83 (C), 136.84 (CH), 135.59 (C), 134.31 (C), 130.70 (CH), 130.42 (CH), 129.22 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 128.9 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 126.51 (CH), 125.80 (CH), 124.56 (q,  $J^1_{\text{Cq-F}} = 274 \text{ Hz}$ , C<sub>8</sub>), 123.76 (C), 122.30 (CH), 117.69 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>5</sub>), 107.04 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>7</sub>), 52.09 (NCH<sub>2</sub>), 46.56 (OCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3087, 2950, 1717, 1315, 1155, 1107, 1036, 846.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{13}Cl_2F_3N_2O_2$  [M+H]  $^+$ : 429.0374, found 429.0379.

Melting Point: 122 °C.

## (E)-3-(1-(2,4-dichlorobenzyl)-6-nitro-1H-indazol-3-yl)acrylic acid 77

Compound 77 is prepared according to the general procedure **L**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a Light yellow solid (87%).

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 12.60 (s, 1H, OH), 8.91 (d, J = 1.9 Hz, 1H,  $H_7$ ), 8.37 (d, J = 8.9 Hz, 1H,  $H_4$ ), 8.05 (dd, J = 8.9, 1.6 Hz, 1H,  $H_5$ ), 7.79 (d, J = 16.2 Hz, 1H,  $H_{16}$ ), 7.67 (d, J = 1.6 Hz, 1H,  $H_{13}$ ), 7.37 (dd, J = 8.3, 1.9 Hz, 1H,  $H_{11}$ ), 7.04 (d, J = 8.3 Hz, 1H,  $H_{10}$ ), 6.74 (d, J = 16.2, 1H,  $H_{15}$ ), 5.94 (s, 2H, NC $H_2$ ).

<sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 168.02 (CO), 140.31 (C), 140.12 (C), 139.45 (C), 137.51 (CH), 135.22 (C), 135.24 (C), 132.32 (CH), 131.15 (CH), 128.45 (C), 127.35 (CH), 126.58 (CH), 126.07 (C), 123.35 (CH), 117.24 (CH), 109.69 (CH), 46.87 (NCH<sub>2</sub>).

IR v (neat, cm<sup>-1</sup>): 3451, 1695, 1655, 1328, 1131, 871.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{11}Cl_2N_3O_4$  [M+H]  $^+$ : 393.1428, found 393.1429.

Melting Point: 211-213 °C.

# (E)-3-(1-(2,4-dichlorobenzyl)-6-(trifluoromethyl)-1H-indazol-3-yl)acrylic acid. "Gamendazole" 78

Compound **78** is prepared according to the general procedure L. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (91%).

<sup>1</sup>**H NMR (400 MHz, DMSO)** δ 12.57 (s, 1H, OH), 8.48 (s, 1H, **H**<sub>7</sub>), 8.4 (d, J = 8.6 Hz, 1H, **H**<sub>4</sub>), 7.80 (d, J = 16 Hz, 1H, **H**<sub>16</sub>), 7.72 (d, J = 1.4 Hz, 1H, **H**<sub>14</sub>), 7.60 (d, J = 8.5 Hz, 1H, **H**<sub>5</sub>), 7.37 (dd, J = 8.4, 1.4 Hz, 1H, **H**<sub>12</sub>), 6.99 (d, J = 8.3 Hz, 1H, **H**<sub>11</sub>), 6.65 (d, J = 16 Hz, 1H, **H**<sub>17</sub>), 5.90 (s, 2H, NC**H**<sub>2</sub>).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 167.07 (CO), 139.75 (C), 139.41 (C), 138.95 (C), 136.65 (CH), 134.60 (C), 134.54 (C), 131.88 (CH), 130.25 (CH), 127.31 (q,  $J^2_{\text{Cq-CF}} = 32 \text{ Hz}$ , C<sub>6</sub>), 126.67 (q,  $J^2_{\text{Cq-CF}} = 32.3 \text{ Hz}$ , C<sub>6</sub>), 126.75 (CH), 125.48 (CH), 125.27 (C), 125.14 (q,  $J^1_{\text{Cq-F}} = 274 \text{ Hz}$ , C<sub>8</sub>), 122.96 (CH), 117.24 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>5</sub>), 108.53 (q,  $J^3_{\text{CH-F}} = 4 \text{ Hz}$ , C<sub>7</sub>), 46.13 (NCH<sub>2</sub>).

<sup>19</sup>F NMR (235 MHz, DMSO) δ -59.99 (CF<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3447, 1697, 1641, 1311, 1122, 872.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{11}Cl_2F_3N_2O_2$  [M+H]  $^+$ : 415.0228, found 415.0225.

Melting Point: 200-202 °C.

#### 3-chloro-4-nitro-1*H*-indazole 79

Compound **79** is prepared according to the general procedure **M**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (89%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 13.8 (s, 1H, N**H**), 8.08 (dd, J = 2.7, 8.2 Hz, 1H, **H**<sub>5</sub>), 8.01 (dd, J = 8.2, 2.7 Hz, 1H, **H**<sub>7</sub>), 7.61 (t, J = 8.4 Hz, 1H, **H**<sub>6</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 144.01 (C), 142.23 (C), 133.07 (C), 128.44 (CH), 122.67 (CH), 122.78 (CH), 120.98 (C).

IR v (neat, cm<sup>-1</sup>): 3376, 1557, 1409, 976, 847.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>ClN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 198.1523, found 198.1525.

**Melting Point:** 201 °C.

#### 3-chloro-5-nitro-1*H*-indazole 80

$$O_2N$$
 $\stackrel{5}{\stackrel{4}{\stackrel{3}{\stackrel{3}{\stackrel{}}{\stackrel{}}{\stackrel{}}}}}$ 
 $N$ 
 $^2$ 
 $C_7H_4CIN_3O_2$ 
 $MW: 197 g/mol$ 

Compound **80** is prepared according to the general procedure **M**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (90%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 13.93 (s, 1H, NH), 8.50 (d, J = 2.5 Hz, 1H, H<sub>4</sub>), 8.20 (dd, J = 8.5, 2.5 Hz, 1H, H<sub>6</sub>), 7.77 (d, J = 8.5 Hz, 1H, H<sub>7</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.53 (C), 144.05 (C), 134.01 (C), 125.89 (C), 123.67 (CH), 125.89 (CH), 123.56 (CH).

IR v (neat, cm<sup>-1</sup>): 3145, 3053, 1624, 1339, 1023, 788, 734.

**HRMS** (**ESI**+): Exact mass calcd for  $C_7H_4ClN_3O_2$  [M+H]  $^+$ : 198.1521, found 198.1525.

Melting Point: 207 °C.

#### 3-chloro-6-nitro-1*H*-indazole 81

Compound **81** is prepared according to the general procedure **M**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (93%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 13.91 (s, 1H, NH), 8.45 (d, J = 2.3 Hz, 1H, H<sub>7</sub>), 8.00 (dd, J = 8.3, 2.3 Hz, 1H, H<sub>5</sub>), 7.75 (d, J = 8.3 Hz, 1H, H<sub>4</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.23 (C), 140.35 (C), 133.15 (C), 123.47 (C), 121.74 (CH), 116.82 (CH), 108.25 (CH).

IR v (neat, cm<sup>-1</sup>): 3158, 3074, 1527, 1344, 1047, 792, 725.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>7</sub>H<sub>4</sub>ClN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 198.1522, found 198.1525.

**Melting Point:** 192 °C.

#### 3-chloro-1-methyl-4-nitro-1*H*-indazole 83

Compound **83** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (73%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 8.17 (d, J = 8.3 Hz, 1H, **H**<sub>5</sub>), 7.98 (d, J = 7.9 Hz, 1H, **H**<sub>7</sub>), 7.67 (t, J = 7.8 Hz, 1H, **H**<sub>6</sub>), 4.17 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.63 (C), 141.22 (C), 138.45 (C), 128.37 (CH), 120.33 (CH), 119.24 (C), 117.11 (CH), 37.11 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3092, 2952, 1525, 1339, 1012, 793, 733.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>ClN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 212.0145, found 212.0147.

Melting Point: 78 °C.

#### 3-chloro-1-methyl-5-nitro-1*H*-indazole 84

Compound **84** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (81%).

<sup>1</sup>**H NMR (250 MHz, CDCl<sub>3</sub>) δ** 8.58 (d, J = 2.4 Hz, 1H, **H**<sub>4</sub>), 8.30 (dd, J = 8.2, 2.4 Hz, 1H, **H**<sub>6</sub>), 7.91 (d, J = 8.2 Hz, 1H, **H**<sub>7</sub>), 4.12 (s, 3H, NC**H**<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 146.71 (C), 144.15 (C), 138.25 (C), 126.46 (C), 123.68 (CH), 119.72 (CH), 111.32 (CH), 37.17 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3099, 2922, 2852, 1615, 1521, 1334, 1088, 790, 733.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>ClN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 212.0146, found 212.0147.

**Melting Point:** 190 °C.

#### 3-chloro-1-methyl-6-nitro-1*H*-indazole 85

Compound **85** is prepared according to the general procedure **B**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a white solid (77%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.80 (d, J = 2.5 Hz, 1H,  $H_7$ ), 7.95 (m, 2H,  $H_4$ ,  $H_5$ ), 4.22 (s, 3H, NC $H_3$ ).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.21 (C), 141.36 (C), 137.25 (C), 121.43 (CH), 116.56 (CH), 107.11 (CH), 37.21 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3107, 1523, 1340, 1146, 877, 729.

**HRMS** (**ESI**+): Exact mass calcd for C<sub>8</sub>H<sub>6</sub>ClN<sub>3</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 212.0146, found 212.0147.

**Melting Point:** 153 °C.

#### 2,2,2-trifluoroethyl (E)-3-(1-methyl-7-nitro-1*H*-indazol-3-yl)acrylate 88

Compound **88** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as a yellow solid (69%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.20 (dd, J = 8.1, 1.0 Hz, 1H, H<sub>6</sub>), 8.15 (dd, J = 7.9, 1.0 Hz, 1H, H<sub>4</sub>), 8.03 (d, J = 16.1 Hz, 1H, H<sub>8</sub>), 7.37 (t, J = 7.9 Hz, 1H, H<sub>5</sub>), 6.88 (d, J = 16.1 Hz, 1H, H<sub>9</sub>), 4.63 (q, 2H, J = 7.5 Hz, OCH<sub>2</sub>), 4.28 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.98 (CO), 140.04 (C), 135.85 (C), 135.69 (CH), 132.57 (C), 127.50 (C), 126.78 (CH), 125.01 (CH), 123.17 (q,  $J^{1}_{\text{Cq-F}}$ = 273 Hz, CF<sub>3</sub>), 121.54 (CH), 118.71 (CH), 60.74 (q,  $J^{2}_{\text{CH2-CF}}$ = 32.7 Hz, OCH<sub>2</sub>), 41.71 (NCH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 2919, 1978, 1731, 1638, 1524, 1258, 1153, 792, 729.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{13}H_{10}F_3N_3O_4$  [M+H]  $^+$ : 330.0696, found 330.0696.

Melting Point: 112-114 °C.

# (E)-N-(tert-butyl)-3-(1-methyl-7-nitro-1H-indazol-3-yl) a crylamide~89

Compound **89** is prepared according to the general procedure **J**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 9/1) as yellew oil (65%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 8.14 (dd, J = 7.5, 1.0 Hz, 1H, H<sub>6</sub>), 8.11 (dd, J = 7.5, 1.0 Hz, 1H, H<sub>4</sub>), 7.81 (d, J = 15.5 Hz, 1H, H<sub>8</sub>), 7.30 (t, J = 7.9 Hz, 1H, H<sub>5</sub>), 6.79 (d, J = 15.5 Hz, 1H, H<sub>9</sub>), 5.57 (s, 1H, NH), 4.24 (s, 3H, NCH<sub>3</sub>), 1.45 (s, 9H, CH<sub>3 tert-butyl</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 164.74 (CO), 141.00 (C), 135.61 (C), 132.36 (C), 132.04 (CH), 128.06 (CH), 127.87 (C), 126.94 (CH), 125.03 (CH), 124.95 (CH), 120.80 (CH), 51.86 (C<sub>11</sub>), 41.42 (NCH<sub>3</sub>), 28.99 (CH<sub>3 tertbutyl</sub>).

IR v (neat, cm<sup>-1</sup>): 3291, 3077, 2966, 2924, 1621, 1525, 1324, 1155, 790, 731.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{18}N_4O_3$  [M+H]  $^+$ : 303.1451, found 303.1451.

#### N-(3-chloro-1-methyl-1*H*-indazol-5-yl)-4-methoxybenzenesulfonamide 90

Compound **90** is prepared according to the general procedure **M**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a red solid (43%).

Compound **90** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a red solid (48 %).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.66 (d, J = 7.5 Hz, 2H,  $H_{Ar}$ ), 7.30 (d, J = 2.5 Hz, 1H,  $H_6$ ), 7.23 (dd, J = 3.2, 1.6 Hz, 2H,  $H_4$ ,  $H_7$ ), 6.91 (s, 1H, NH), 6.87 (d, J = 7.5 Hz, 2H,  $H_{Ar}$ ), 3.98 (s, 1H, NCH<sub>3</sub>), 3.82 (s, 1H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.32 (C), 139.64 (C), 132.42 (C), 130.40 (C), 130.39 (C), 129.62 (2×CH), 124.97 (CH), 121.29 (C), 114.36 (2×CH), 113.97 (CH), 110.33 (CH), 55.73 (OCH<sub>3</sub>), 36.10 (NCH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3248, 2935, 2837, 1578, 1432, 1262, 1151, 1091, 930, 832, 801, 680.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{14}ClN_3O_3S$  [M+H]  $^+$ : 352.0515, found 352.0517.

**Melting Point:** 145-147 °C.

## 4-methoxy-N-(1-methyl-1*H*-indazol-5-yl)benzenesulfonamide 91

Compound **91** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a grey solid (31%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.88 (s, 1H, H<sub>3</sub>), 7.62 (d, J = 8.8 Hz, 2H, H<sub>Ar</sub>), 7.38 (d, J = 1.7 Hz, 1H, H<sub>4</sub>), 7.28 (d, J = 8.9, 1H, H<sub>7</sub>), 7.12 (dd, J = 8.9, 1.7 Hz, 1H, H<sub>6</sub>), 6.85 (d, J = 8.8 Hz, 2H, H<sub>Ar</sub>), 6.57 (s, 1H, NH), 4.04 (s, 3H, NCH<sub>3</sub>), 3.81 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.19 (C), 138.50 (C), 132.88 (CH), 130.63 (C), 129.59 (2×CH), 129.43 (C), 124.20 (C), 124.14 (CH), 116.22 (CH), 114.26 (2×CH), 109.77 (CH), 55.70 (OCH<sub>3</sub>), 35.83 (NCH<sub>3</sub>).

IR υ (neat, cm<sup>-1</sup>): 3260, 3012, 2948, 2844, 1594, 1496, 1347, 1259, 1150, 1021, 827, 637.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_3O_3S$  [M+H]  $^+$ : 318.0904, found 318.0906.

Melting Point: 133-135 °C.

#### N-(3-chloro-4-ethoxy-1-methyl-1*H*-indazol-5-yl)-4-methoxybenzenesulfonamide 92

Compound **92** is prepared according to the general procedure **M**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a red solid (28%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.72 (d, J = 9.2 Hz, 1H, H<sub>6</sub>), 7.66 (d, J =Hz, 2H, H<sub>Ar</sub>), 7.05 (d, J = 9.2 Hz, 1H, H<sub>7</sub>), 7.03 (s, NH), 6.83 (d, J = 8.9 Hz, 2H, H<sub>Ar</sub>), 3.93 (s, 3H, NCH<sub>3</sub>), 3.76 (s, 3H, OCH<sub>3</sub>), 3.64 (q, J = 7.0 Hz, 2H, OCH<sub>2</sub>), 1.31 (t, J = 7.0 Hz, 3H, C-CH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.12 (C), 149.72 (CH), 142.16 (C), 141.16 (C), 135.98 (CH), 130.87 (C), 129.55 (C), 129.17 (2×CH), 123.72 (CH), 123.66 (CH), 122.94 (C), 114.76 (C), 114.12 (2×CH), 105.65 (CH), 72.43 (OCH<sub>2</sub>), 55.56 (OCH<sub>3</sub>), 35.95 (NCH<sub>3</sub>), 15.36 (C-CH<sub>3</sub>).

IR υ (neat, cm<sup>-1</sup>): 3241, 3072, 2978, 2840, 1592, 1574, 1321, 1260, 1149, 1090, 1023, 846, 676.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{17}H_{18}ClN_3O_4S$  [M+H]  $^+$ : 396.0514, found 396.0516.

Melting Point: 135-137 °C.

## N-(3-chloro-1-methyl-1*H*-indazol-6-yl)-4-methoxybenzenesulfonamide 93

Compound **93** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a dark red solid (46%).

<sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>) δ 7.74 (d, J = 8.9 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.47 (d, J = 8.7 Hz, 1H,  $\mathbf{H_{4}}$ ), 7.26 (d, J = 2.4 Hz, 1H,  $\mathbf{H_{7}}$ ), 7.22 (s, 1H, NH), 6.88 (d, J = 8.9 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 6.78 (dd, J = 8.7, 2.4 Hz, 1H,  $\mathbf{H_{5}}$ ), 3.95 (s, 3H, NCH<sub>3</sub>), 3.81 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.29 (C), 139.57 (C), 132.35 (C), 130.46 (C), 130.35 (C), 129.60 (2×CH), 124.84 (CH), 121.25 (C), 114.35 (2×CH), 113.74 (CH), 110.32 (CH), 55.71 (OCH<sub>3</sub>), 36.07 (NCH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3252, 2940, 2839, 1631, 1576, 1441, 1336, 1261, 1146, 1087, 939, 830, 674.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{14}ClN_3O_3S$  [M+H]  $^+$ : 352.0516, found 352.0517.

Melting Point: 150 °C.

## 4-methoxy-N-(1-methyl-1*H*-indazol-6-yl)benzenesulfonamide 94

Compound **94** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (31%).

<sup>1</sup>H NMR (250 MHz, Acètone-d<sub>6</sub>) δ 9.00 (s, 1H, NH), 7.85 (d, J = 1.0 Hz, 1H, H<sub>3</sub>), 7.77 (d, J = 9.2 Hz, 2H, H<sub>Ar</sub>), 7.59 (dd, J = 8.6, 1.0 Hz, 1H, H<sub>5</sub>), 7.39 (dt, J = 1.8, 0.9 Hz, 1H, H<sub>7</sub>), 7.02 – 6.93 (m, 3H, H<sub>Ar</sub>), 3.98 (s, 3H, NCH<sub>3</sub>), 3.81 (s, 3H, NCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 163.37 (C), 140.34 (C), 135.26 (C), 132.87 (CH), 130.65 (C), 129.56 (2×CH), 122.11 (CH), 121.88 (C), 116.10 (CH), 114.37 (2×CH), 101.47 (CH), 55.72 (OCH<sub>3</sub>), 35.76 (NCH<sub>3</sub>).

IR v (neat, cm<sup>-1</sup>): 3076, 2944, 2842, 1593, 1259, 1149, 1089, 1028, 834, 700.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_3O_3S$  [M+H]  $^+$ : 318.0905, found 318.0906.

Melting Point: 209 °C.

## N-(3-chloro-1-methyl-1*H*-indazol-4-yl)-4-methoxybenzenesulfonamide 95

Compound **95** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a red solid (43%).

<sup>1</sup>H NMR (250 MHz, Acètone-d<sub>6</sub>) δ 8.30 (s, 1H, NH), 7.77 (d, J = 9.1 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.39 – 7.34 (dd, J = 2.5, 5.0 Hz, 2H,  $\mathbf{H_7}$ ,  $\mathbf{H_6}$ ), 7.13 (dd, J = 5.0, 3.3 Hz, 1H,  $\mathbf{H_5}$ ), 7.00 (d, J = 9.1 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 3.97 (s, 3H, NCH<sub>3</sub>), 3.84 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, Acètone-d<sub>6</sub>) δ 163.29 (C), 142.60 (C), 131.45 (C), 129.80 (C), 129.44 (2×CH), 128.76 (C), 127.91 (CH), 114.18 (CH), 114.11 (2×CH), 113.60 (C), 107.14 (CH), 55.19 (OCH<sub>3</sub>), 35.32 (NCH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3359, 2918, 2849, 1697, 1257, 1153, 1092, 1027, 832, 666.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{14}ClN_3O_3S$  [M+H]  $^+$ : 352.0515, found 352.0517.

**Melting Point:** 173 °C.

## 4-methoxy-N-(1-methyl-1*H*-indazol-4-yl)benzenesulfonamide 96

Compound **96** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a red solid (30%).

<sup>1</sup>**H NMR** (250 MHz, Acètone-d<sub>6</sub>) δ 9.11 (s, 1H, NH), 8.13 (s, 1H, H<sub>3</sub>), 7.75 (d, J = 9.2 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 7.26 (dd, J = 5.0, 0.9 Hz, 2H,  $\mathbf{H_{7}}$ ,  $\mathbf{H_{5}}$ ), 7.11 – 7.06 (dd, J = 5.0, 0.9 Hz, 1H,  $\mathbf{H_{6}}$ ), 6.97 (d, J = 9.2 Hz, 2H,  $\mathbf{H_{Ar}}$ ), 3.99 (s, 3H, NCH<sub>3</sub>), 3.80 (s, 3H, OCH<sub>3</sub>).

<sup>13</sup>C NMR (101 MHz, Acètone-d<sub>6</sub>) δ 164.05 (C), 141.98 (C), 132.66 (C), 131.44 (C), 131.26 (CH), 130.23 (2×CH), 127.42 (CH), 119.21 (C), 115.00 (2×CH), 112.50 (CH), 106.73 (CH), 56.12 (OCH<sub>3</sub>), 35.91 (NCH<sub>3</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3077, 2947, 2841, 1594, 1497, 1328, 1261, 1149, 1030, 785, 698.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{15}H_{15}N_3O_3S$  [M+H]  $^+$ : 318.0906, found 318.0906.

Melting Point: 190-192 °C.

#### Methyl 3-(7-((4-methoxyphenyl)sulfonamido)-1-methyl-1H-indazol-3-yl)propanoate 97

Compound **97** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a dark red solid (69%).

<sup>1</sup>H NMR (250 MHz, Acètone-d<sub>6</sub>) δ 8.61 (s, 1H, NH), 7.67 (dd, J = 8.1, 1.0 Hz, 1H, H<sub>4</sub>), 7.63 (d, 2H, J = 8.6, H<sub>Ar</sub>), 7.06 (d, J = 8.6, 2H, H<sub>Ar</sub>), 6.87 (dd, J = 8.1, 7.3 Hz, 1H, H<sub>5</sub>), 6.55 (dd, J = 7.3, 1.0 Hz, 1H, H<sub>6</sub>), 4.27 (s, 3H, NCH<sub>3</sub>), 3.90 (s, 3H, OCH<sub>3</sub>), 3.63 (s, 3H, CO<sub>2</sub>CH<sub>3</sub>), 3.21 (t, J = 7.5 Hz, 2H, H<sub>12</sub>), 2.81 (t, J = 7.5 Hz, 2H, H<sub>13</sub>).

<sup>13</sup>C NMR (101 MHz, Acètone-d<sub>6</sub>) δ 173.66 (CO), 164.20 (C), 143.96 (C), 139.07 (C), 132.50 (C), 130.71 (2×CH), 127.44 (CH), 126.31 (C), 121.05 (C), 120.99 (CH), 120.43 (CH), 115.04 (2×CH), 56.25 (OCH<sub>3</sub>), 51.78 (CO<sub>2</sub>CH<sub>3</sub>), 38.93 (NCH<sub>3</sub>), 33.28 (C<sub>12</sub>), 22.65 (C<sub>13</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3211, 2954, 1719, 1347, 1155, 1015, 844, 693.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{19}H_{21}N_3O_5S$  [M+H]  $^+$ : 404.1276, found 404.1275.

Melting Point: 163-165 °C.

# $N-(\textit{tert}-\textit{butyl})-3-(7-((4-\textit{methoxyphenyl}) \textit{sulfonamido})-1-\textit{methyl}-1\\ \textit{H}-\textit{indazol}-3-\textit{yl}) \textit{propanamide} \ 98$

Compound **98** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (63%).

<sup>1</sup>H NMR (250 MHz, MeOD) δ 7.66 (dd, J = 8.1, 1.0 Hz, 1H, H<sub>4</sub>), 7.58 (d, J = 9.5, 2H, H<sub>Ar</sub>), 7.44 (s, 1H, NH), 7.02 (d, J = 9.5, 2H, H<sub>Ar</sub>), 6.84 (dd, J = 8.1, 7.3 Hz, 1H, H<sub>5</sub>), 6.45 (dd, J = 7.3, 1.0 Hz, 1H, H<sub>6</sub>), 4.26 (s, 3H, NCH<sub>3</sub>), 3.87 (s, 3H, OCH<sub>3</sub>), 3.19 (t, J = 7.6 Hz, 2H, H<sub>12</sub>), 2.56 (t, J = 7.6 Hz, 2H, H<sub>13</sub>), 1.24 (s, 9H, CH<sub>3 tert-butyl</sub>).

<sup>13</sup>C NMR (63 MHz, MeOD) δ 174.29 (CO), 164.77 (C), 145.24 (C), 139.41(C), 132.23 (C), 130.88 (2×CH), 128.18 (CH), 126.40 (C), 121.64 (CH), 121.33 (C), 120.88 (CH), 115.12 (2×CH), 56.23 (OCH<sub>3</sub>), 51.82 (C<sub>15</sub>), 38.72 (NCH<sub>3</sub>), 37.39 (C<sub>12</sub>), 28.87 (CH<sub>3 tert-butyl</sub>), 23.85 (C<sub>13</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3414, 3061, 2968, 1737, 1655, 1452, 1260, 1160, 835, 739, 700.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{22}H_{28}N_4O_4S$  [M+H]  $^+$ : 445.1906, found 445.1904.

Melting Point: 196-198 °C.

# 2,2,2-trifluoroethyl 3-(7-((4-methoxyphenyl)sulfonamido)-1-methyl-1H-indazol-3-yl)propanoate 99

Compound **99** is prepared according to the general procedure **N**. The expected product is obtained after flash chromatography (petroleum ether/ethyl acetate 8/2) as a white solid (59%).

<sup>1</sup>H NMR (250 MHz, Acètone-d<sub>6</sub>) δ 8.59 (s, 1H, NH), 7.68 (dd, J = 8.1, 1.0 Hz, 1H, H<sub>4</sub>), 7.64 (d, J = 9.0 Hz, 2H, H<sub>Ar</sub>), 7.07 (d, J = 9.0 Hz, 2H, H<sub>Ar</sub>), 6.88 (dd, J = 8.0, 7.4 Hz, 1H, H<sub>5</sub>), 6.56 (dd, J = 7.3, 1.0 Hz, 1H, H<sub>6</sub>), 4.68 (q, J = 8.9 Hz, 2H, OCH<sub>2</sub>), 4.27 (s, 3H, NCH<sub>3</sub>), 3.90 (s, 3H, OCH<sub>3</sub>), 3.26 (t, J = 7.2 Hz, 2H, H<sub>12</sub>), 3.00 (t, J = 7.2 Hz, 2H, H<sub>13</sub>).

<sup>13</sup>C NMR (63 MHz, Acètone-d<sub>6</sub>) δ 172.04 (CO), 164.17 (C), 143.45 (C), 139.07 (C), 132.44 (C), 130.68 (2×CH), 127.48 (CH), 124.59 (q,  $J^1_{\text{Cq-F}}$  = 273 Hz, CF<sub>3</sub>), 126.21 (C), 121.05 (C), 120.89 (CH), 120.48 (CH), 115.01 (2×CH), 60.77 (q,  $J^2_{\text{CH2-CF}}$  = 32.7 Hz, OCH<sub>2</sub>), 56.22 (OCH<sub>3</sub>), 38.92 (NCH<sub>3</sub>), 32.65 (C<sub>13</sub>), 22.32 (C<sub>12</sub>).

IR v (neat, cm<sup>-1</sup>): 3242, 2920, 2850, 1748, 1265, 1150, 1091, 831, 683.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{20}H_{20}F_3N_3O_5S$  [M+H]  $^+$ : 472.1149, found 472.1148.

Melting Point: 138-140 °C.

## 3-(7-((4-methoxyphenyl)sulfonamido)-1-methyl-1*H*-indazol-3-yl)propanoic acid 100

Compound **100** is prepared according to the general procedure **L** from the compunds **97**. The expected product is obtained without flash chromatography as a white solid (87%).

<sup>1</sup>H NMR (250 MHz, Acètone-d<sub>6</sub>) δ 8.62 (s, 1H, NH), 7.70 (d, J = 7.6 Hz, 1H, H<sub>4</sub>), 7.63 (d, J = 8.8 Hz, 2H, H<sub>Ar</sub>), 7.08 (d, J = 8.8 Hz, 2H, H<sub>Ar</sub>), 6.88 (t, J = 7.7 Hz, 1H, H<sub>5</sub>), 6.55 (d, J = 7.7 Hz, 1H, H<sub>6</sub>), 4.28 (s, 3H, NCH<sub>3</sub>), 3.91 (s, 3H, OCH<sub>3</sub>), 3.21 (t, J = 7.6 Hz, 2H, H<sub>12</sub>), 2.84 (t, J = 7.6 Hz, 2H, H<sub>13</sub>).

<sup>13</sup>C NMR (101 MHz, Acètone-d<sub>6</sub>) δ 173.87 (CO), 163.83 (C), 143.87 (C), 138.72 (C), 130.37 (2×CH), 127.07 (C), 125.96 (C), 120.71 (CH), 120.06 (CH), 114.69 (2×CH), 55.92 (OCH<sub>3</sub>), 38.56 (NCH<sub>3</sub>), 32.85 (C<sub>13</sub>), 22.32 (C<sub>12</sub>).

**IR** υ (neat, cm<sup>-1</sup>): 3257, 2917, 2849, 1711, 1462, 1154, 1024, 802.

**HRMS** (**ESI**+): Exact mass calcd for  $C_{18}H_{19}N_3O_5S$  [M+H]  $^+$ : 390.1118, found 390.1118.

Melting Point: 197 °C.

Références Bibliographiques

Références Bibliographiques

- 1. Y. M. Liu, J.S. Yang, Q.U. Liu, Chem. Pharm. Bull. 2004, 52, 454.
- **2.** E. A. I. Barakat, U. A. Fatma, *J. Ethnopharmacol.* **2003**, 89, 193.
- **3.** M. Eddouks, M. Maghrani, A. Lemhadri, M.L. Quahidi, H. Jouad, *J. Ethnopharmacol.* **2002**, 82, 97.
- 4. O. Said, K. Khali, S. Fulder, H. Azaizeh, J. Ethnopharmacol. 2002, 83, 251.
- **5.** R. Attaur, S. Malik, S. S. Hasan, M. I. Choudharry, C. Z. Ni, J. Clardy, *Tetrahedron Lett.* **1995**, *36*, 1993.
- **6.** a) P.I. Hesketh, D.R. Gandara, J. Natl. *Cancer Inst.* **1991**, *83*, 613. b) M. Nakane, Clin. *Chem. Lab. Med.* **2003**, *41*, 865.
- 7. Pan Li, Chunrui Wu, Jingjing Zhao, Donald C. Rogness, Feng Shi, J. Org. Chem. 2012, 77, 3149.
- 8. Christian Spiteri, Steve Keeling, John E. Moses, Org. Lett. 2010, 12, 3368.
- 9. M. Sironi, L. Massimiliano, P. Transidico, M. Pinza, S. Sozzani, A. Mantovani, A. vecchi, *Int. J. Clin. Lab. Res.* 2000, *30*, 17.
- 10. A. D. Mills, M. Z. Nazer, M. J. Haddadin, M. J. Kurth, J. Org. Chem. 2006, 71, 2687.
- **11.** T. Zhang, W. Bao, *J. Org. Chem.* **2013**, 78, 1317.
- **12.** M. R. Kumar, A. Park, S. Lee, *Org. Lett.* **2011**, *13*, 3543.
- 13. N. Cankařováa, J. Hlaváča, V. Krchňákb, Org. Prep. Proced. Int. 2010, 42, 433.
- **14.** D. D. Gaikwad, A. D. Chapolikar, C. G. Devkate, K. D. Warad, A. P. Tayade, R. P. Pawar, A. J. Domb, *Eur. J. Med. Chem.* **2015**, *90*, 707.
- 15. H. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran, Ocariz C. Ochoa de, *Mini. Rev. Med. Chem.* 2005, 5, 869.
- **16.** A. Takeuchi, M. Hori, S. Sato, H. S. Ban, T. Kuchimaru, S. Kizaka-Kondoh, T. Yamori, H. Nakamura, *Med. Chem. Commun.* **2012**, *3*, 1455.
- **17.** S. Brian, R. K. Brown, J. P. Richard, D. Stanley, R. K. John, K. J. Tammie, M. H. Steven, A. M. Heath, R. B. Bruce, P. S. P. Honore, R. B. M. Puttfarcken, C. M. Kennan, R. F. Connie, L. Chih-Hung, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3291.
- **18.** S. Di Cosimo, G. Ferretti, P. Papaldo, P. Carlini, A. Fabi, F. Cognetti, *Drugs Today Barc*. **2003**, *39*, 157.
- 19. S. S. Matthew, J. S. Mitchell, Org. Biomol. Chem. 2004, 2, 2551.
- **20.** K.W. Locke, R.W. Dunn, J. W. Hubbard, C. L. Vanselous, M. Cornfeldt, F. Stuart, J. T. Strupczewski, *Drug Dev. Res.* **1990**, *19*, 239.
- **21.** a) A. J. Souers, J. Gao, M. Brune, F. Bush, D. Wodka, A. Vasudevan, A. S. Judd, M. Mulhern, S. Brodjian, B. Dayton, R. Shapiro, L. E. Hernandez, K. C. Marsh, H. L. Sham, C. A. Collins, P. R. Kym, *J. Med. Chem.* **2005**, *48*, 1318. b) A. J. Souers, J. Gao, D. Wodka, A. S. Judd, M. M. Mulhern, J. J. Napier, M. E. Brune, E. N. Bush, S. J. Brodjian, B. D. Dayton, R. Shapiro, L. E. Hernandez, K. C. Marsh, H. L. Sham, C. A. Collins, P. R. Kym, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2752.
- **22.** J. H. Sun, C. A. Teleha, J. S. Yan, J. D. Rodgers, D. A. Nugiel, *J. Org. Chem.* **1997**, *62*, 5627.
- **23.** M. Patel, J. D. Rodgers, R. J. McHugh Jr., B. L. Johnson, B. C. Cordova, R. M. Klabe, L. T. Bacheler, S. E. Viitanen, S. S. Ko, *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3217.
- 24. C. Dell'Erba, M. Novi, G. Petrillo, C. Tavani, Tetrahedron 1992, 48, 325.
- 25. H. Kawakubo, T. Sone, K. Wakigawa, T. Narita, J. Pharmaceut. Soc. Jap. 1987, 107, 28.
- **26.** L. Mosti, G. Menozzi, P. Schenone, L. Molinario, F. Conte, C. Montanario, E. Marmo, *Il Farmaco Ed.Sc*, **1988**, *43*, 10.
- **27.** O. Rosati, M. Curini, M. C. Marcotullio, A. Macchiarulo, M. Perfume, L. Mattioli, F. Rismondo, G. Cravotto, *Bioorg. Med. Chem.* **2007**, *15*, 3463.
- **28.** L. J. Huang, M. L. Shih, H. S. Chen, S. L. Pan, C. M. Teng, F. Y. Lee, S. C. Kuo, *Bioorg. Med. Chem.* **2006**, *14*, 528.

- 29. M. Bai, G. Carr, R. J. DeOrazio, T. D. Friedrich, S. Dobritsa, K. Fitzpatrick, P. R. Guzzo, D. B. Kitchen, M. A. Lynch, D. Peace, M. Sajad, A. Usyatinsky, M. A. Wolf, *Bioorg. Med. Chem. Lett.* 2010, 20, 3017.
- **30.** S. Brian, R. K. Brown, J. P. Richard, D. Stanley, R. K. John, K. J. Tammie, M. H. Steven, A. M. Heath, R. B. Bruce, P. S. P. Honore, R. B. M. Puttfarcken, C. M. Kennan, R. F. Connie, L. C. Hung, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3291.
- **31.** P. Salvatore, R. Demetrio, P. Fabiana, C. Giovanni, M. Benedetta, D. Giuseppe, Maria, R. Valeria, G. C. Maria, B. Gabriella, M. Fiorella, *ARKIVOC*. **2010**, *10*, 163.
- **32.** M. D. Surman, E. E. Freeman, J. F. Grabowski, M. Hadden, A. J. Henderson, G. Jiang, X. Jiang, M. Luche, Y. Khmelnitsky, S. Vickers, J. Viggers, S. Cheetham, P. R. Guzzo, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 7015.
- **33.** Y. Hu, D. Cole, R. A. Denny, D. R. Anderson, M. Ipek, Y. Ni, X. Wang, S. Thaisrivongs, T. Chamberlain, J. P. Hall, J. Liu, M. Luong, L. L. Lin, J. B. Telliez, A. Gopalsam, *Bioorg. Med. Chem. Lett.* **2011**, *21*, 4758.
- **34.** H. An, N. J. Kim, J. W. Jung, H. Jang, J. W. Park, Y. G. Suh, *Bioorg. Med. Chem. Lett.* **2011**, *21*, 6297.
- 35. M. E. Fraley, J. T. Steen, E. J. Brnardic, K. L. Arrington, K. L. Spencer, B. A. Hanney, Y. Kim, G. D. Hartman, S. M. Stirdivant, B. A. Drakas, K. Rickert, E. S. Walsh, K. Hamilton, C. A. Buser, J. Hardwick, W. Tao, S. C. Beck, X. Mao, R. B. Lobell, L. Sepp-Lorenzino, Y. Yan, M. Ikuta, S. K. Munshi, L. C. Kuoc, C. Kreatsoulas, *Bioorg. Med. Chem. Lett.* 2006, *16*, 6049.
- **36.** C. M. McBride, P. A. Renhowe, T. G. Gesner, J. M. Jansen, J. Lin, S. Ma, Y. Zhou, C. M. Shafer, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 3789.
- **37.** P. Barraja, V. Spano, D. Giallombardo, P. Diana, A. Montalbano, A. Carbone, B. Parrino, G. Cirrincione, *Tetrahedron* **2013**, *69*, 6474.
- **38.** H. R. Snyder, C. B. Thompson, R. L. Hinman, J. Am. Chem. Soc. **1952**, 74, 2009.
- **39.** M. Boulouard, P. S. Bard, S. B. Gueulle, E. Lohou, S. Stiebing, V. Collot, S. Rault, *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3177.
- 40. A. P. Piccionello, A. Pace, I. Pibiri, S. Buscemi, N. Vivona, *Tetrahedron*. 2006, 62, 8792.
- **41.** S. Antonysamy, G. Hirst, F. Park, P. Sprengeler, F. Stappenbeck, R. Steensma, M. Wilson, M. Wong, *Bioorg. Med. Chem. Lett.* **2009**, *19*, 279.
- **42.** T. Jin, Y. Yamamoto, *Angew. Chem. Int. Ed.*, **2007**, *46*, 3323. (b) P. Li, J. Zhao, C. Wu, R. C. Larock, F. Shi, *Org. Lett.* **2011**, *13*, 3340.
- **43.** Z. Liu, F. Shi, P. D. G. Martinez, C. Raminelli, R. C. Larock, *J. Org. Chem.* **2008**, *73*, 219. (b) D. G. Yu, M. Suri, F. Glorius, *J. Am. Chem. Soc.* **2013**, *135*, 8802. (c) P. Li, C. Wu, J. Zhao, D. C. Rogness, F. Shi, *J. Org. Chem.* **2012**, *77*, 3127.
- **44.** R. D'Alessio, A. Bargiotti, S. Metz, M. G. Brasca, A. Cameron, A. Ermoli, A. Marsiglio, P. Polucci, F. Roletto, M. Tibolla, M. L. Vazquez, A. Vulpetti, P. Pevarello, *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1315.
- **45.** N. P. Peet, M. E. Letourneau, *Heterocycles*. **1991**, *32*, 41.
- **46.** H. C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W. M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. A. Gordon, B. P. Damiano, B. E. Maryanoff, *J. Med. Chem.* **2005**, *48*, 1725.
- **47.** A. Y. Lebedev, A. S. Khartulyari, A. Z. Voskoboynikov, *J. Org. Chem.*, **2005**, *70*, 596. (b) R. C. Wheeler, E. Baxter, I. B. Campbell, S. J. F. Macdonald, *Am. Chem. Soc.* **2011**, *15*, 565.
- **48.** C. Pabba, H. J.Wang, S. R. Mulligan, Z. J. Chen, T. M. Stark, B. T. Gregg, *Tetrahedron Lett.*, **2005**, *46*, 7553. (b) X. Xiong, Y. Jiang, D. Ma, *Org. Lett.* **2012**, *14*, 2552.

- **49.** A. P. Piccionello, A. Pace, P. Pierro, I. Pibiri, S. Buscemi, N. Vivona, *Tetrahedron* **2009**, 65, 119.
- **50.**Y. K. Lee, D. J. Parks, T. Lu, T.V. Thieu, T.Markotan, W. Pan, D. F. McComsey, K. L.Milkiewicz, C. S. Crysler, N. Ninan, M. C. Abad, E. C. Giardino, B. E. Maryanoff, B. P. Damiano, M. R. Player, *J. Med. Chem.* **2008**, *51*, 282.
- **51.** D. Vina, E. D. Olmo, J. L. L. Perez, A. San Feliciano, *Org. Lett.* **2007**, *9*, 525.
- **52.**Y. Suzuki, T. Toyota, A. Miyashita, M. Sato, *Chem. Pharm. Bull.* **2006**, *54*, 1653.
- **53.** P. D. Lokhande, A. Raheem, S. T. Sabale, A. R. Chabukswar, S. C. Jagdale, *Tetrahedron Lett.* **2007**, *48*, 6890.
- **54.** C. M. Counceller, C. C. Eichman, B. C. Wray, J. P. Stambuli, *Org. Lett.* **2008**, *10*, 1021.
- **55.** K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya, T. Sakamoto, *Tetrahedron* **2007**, *63*, 2695.
- **56.** D. Simoni, R. Romagnoli, R. Baruchello, R. Rondanin, M. Rizzi, M. G. Pavani, D. Alloatti, G. Giannini, M. Marcellini, T. Riccioni, M. Castorina, M. B. Guglielmi, F. Bucci, P. Carminati and C. Pisano, *J. Med. Chem.* **2006**, *49*, 3143.
- 57. D. J. Varughese, M. S. Manhas and A. K. Bose, Tetrahedron Lett. 2006, 47, 6795.
- **58.** A. Gerpe, G. Aguirre, L. Boiani, H. Cerecetto, M. Gonzalez, C. O. Azar, C. Rigol, J. D.Maya, A. Morello, O. E. Piro, V. J. Aran, A. Azqueta, A. L. de Cerain, A. Monge, M. A. Rojas, G. Yaluff, *Bioorg. Med. Chem.*, **2006**, *14*, 3467. (b) B. Avila, M. H. E. Dakdouki, M. Z. Nazer, J. G. Harrison, D. J. Tantillo, M. J. Haddadin, M. J. Kurth, *Tetrahedron Lett.* **2012**, *53*, 6475.
- **59.** L. C. Behr, E. G. Alley, O. Levand, J. Org. Chem. **1962**, 27, 65.
- 60. L. C. Behr, J. Org. Chem. 1954, 76, 3672.
- **61.** D. Johnston, D. M. Smith, T. Shepherd, D. Thompson, *J. Chem. Soc. Perkin Trans.* **1987**, 1, 495.
- 62. F. Sun, X. Feng, X. Zhao, Z. B. Huang, D. Q. Shi, Tetrahedron 2012, 68, 3851.
- **63.** M. De Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen, J. A. Katzenellenbogen, *J. Med. Chem.* **2005**, *48*, 1132.
- **64.** S. R. Fletcher, E. McIver, S. Lewis, F. Burkamp, C. Leech, G. Mason, S. Boyce, D. Morrison, G. Richards, K. Sutton, A. B. Jones, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 2872.
- 65. M. A. Ardakani, R. K. Smalley, R. H. Smith, Synthesis 1979, 308.
- 66. P. L. Cremades, P. Molina, E. Aller, A. Lorenzo, Synlett. 2000, 1411.
- 67. I. Bouillon, J. Zaj´ıcek, N. Pudelov´a, V. Krchñák, J. Org. Chem. 2008, 73, 9027.
- **68.** K. Y. Lee, S. Gowrisankar, J. N. Kim, *Tetrahedron Lett.* **2005**, *46*, 5387.
- **69.** K. Y. Lee, J. M. Kim, J. N. Kim, *Tetrahedron Lett.* **2003**, 44, 6737.
- 70. M. R. Kumar, A. Park, N. Park, S. Lee, Org. Lett. 2011, 13, 3542.
- **71.** V. Collot, P. Dallemagne, P. R. Bovy, S. Rault, *Tetrahedron* **1999**, *55*, 6917. (b) V. Collot, P. R. Bovy, S. Rault, *Tetrahedron Lett.* **2000**, *41*, 9053.
- **72.** V. Collot, D. Varlet, S. Rault, *Tetrahedron Lett.* **2000**, *41*, 4363.
- **73.** A. Arnautu, V. Collot, J. C. Ros, C. Alayrac, B. Witulski, S. Rault, *Tetrahedron Lett.* **2002**, 43, 2695.
- 74. S. Grosse, « Thèse de doctorat »; Université d'Orléans (France), 2014.
- **75.** (a) Wolfe, J. P.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **1999**, *38*, 2413. (b) Wolfe, J. P.; Buchwald, S. L. *Angew. Chem., Int. Ed.* **1999**, *38*, 3415. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. *J. Am. Chem. Soc.* **1999**, *121*, 9550.
- 76. Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
- 77. Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379.
- **78.** a) Campeau, L.-C.; Fagnou, K. *Chem. Commun.* **2006**, 1253. b) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. *J. Am. Chem. Soc.* **2006**, 128, 581. c) García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. *J. Am. Chem. Soc.* **2006**, 128, 1066.

- 79. a) H.-Y. Sun, S. I. Gorelsky, D. R. Stuart, L.-C. Campeau, K. Fagnou, *J. Org. Chem.* 2010, 75, 8180. b) L. Theveau, C. Verrier, P. Lassalas, T. Martin, G. Dupas, O. Querolle, L. Van Hijfte, F. Marsais, C. Hoarau, *Chem. Eur. J.* 2011, 17, 14450.
- **80.** L. Jouela, L. Djakovitch, *Adv. Synth. Catal.* **2009**, *351*, 673.
- 81. F. Jafarpour, P. T. Ashtiani, J. Org. Chem. 2009, 74, 1364.
- 82. N. Lebrasseur, I. Larrosa, Adv. Heterocycl. Chem. 2012, 309.
- **83.** B. S. Lane, D. Sames, *Org. Lett.* **2004**, *6*, 2897.
- 84. X. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc. 2005, 127, 4996.
- 85. B. B. Toure, B. S. Lane, D. Sames, Org. Lett. 2006, 8, 1979.
- **86.** S. Yanagisawa, K. Itami, *Tetrahedron* **2011**, *67*, 4425.
- 87. M.-Z. Lu, P. Lu, Y.-H. Xu, T.-P. Loh, Org. Lett. 2014, 16, 2614.
- 88. J. Zheng, Y. Zhang, S. Cui, Org. Lett. 2014, 16, 3560.
- 89. J. Cornella, P. Lu, I. Larrosa, Org. Lett. 2009, 11, 5506.
- 90. J. Zhou, P. Hu, M. Zhang, S. Huang, M. Wang, W. Su, Chem. Eur. J. 2010, 16, 5876.
- 91. Y. Akita, Y. Itagaki, S. Takizawa, A. Ohta, Chem. Pharm. Bull. 1989, 37, 1477.
- **92.** Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, M. Shimizu, *Heterocycles* **1985**, 23, 2327.
- 93. B. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc. 2005, 127, 8050.
- **94.** Z. Zhang, Z. Hu, Z. Yu, P. Lei, H. Chi, Y. Wang, R. He, *Tetrahedron Lett.* **2007**, *48*, 2415.
- **95.** F. Bellina, F. Benelli, R. Rossi, *J. Org. Chem.* **2008**, *73*, 5529.
- 96. L. Ackermann, S. Barfuesser, Synlett 2009, 808.
- 97. L. Joucla, N. Batail, L. Djakovitch, Adv. Synth. Catal. 2010, 352, 2929.
- **98.**Y. Chen, S. Guo, K. Li, J. Qu, H. Yuan, Q. Hua, B. Chen, *Adv. Synth. Catal.* **2013**, *355*, 711.
- **99.** G. Cusati, L. Djakovitch, *Tetrahedron Lett.* **2008**, *49*, 2499.
- 100. L. Djakovitch, P. Rouge, R. Zaidi, Catal. Comm. 2007, 8, 1561.
- **101.** R. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am. Chem. Soc. **2008**, 130, 8172.
- 102. M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357.
- **103.** P. S. Humphries, J. V. Almaden, S. J. Barnum, T. J. Carlson, Q.-Q. T. Do, J. D. Fraser, M. Hess, Y. H. Kim, K. M. Ogilvie, S. Sun, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 6116.
- 104. J. Koubachi, S. El Kazzouli, M. Bousmina, G. Guillaumet, Eur. J. Org. Chem. 2014, 5119.
- **105.** J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Synlett*. **2006**, 3237.
- **106.** J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *J. Org. Chem.* **2007**, 72, 7650.
- 107. Y. Wang, B. Frett, H.-y. Li, Org. Lett. 2014, 16, 3016.
- **108.** M.-A. Hiebel, Y. Fall, M.-C. Schermann, S. Berteina-Raboin, *Eur. J. Org. Chem.* **2014**, 4643.
- 109. H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, Org. Lett. 2012, 14, 1688.
- 110. Y. Liu, L. He, G. Yin, G. Wu, Y. Cui, Bull. Kor. Chem. Soc. 2013, 34, 2340.
- **111.** L. Zhao, H. Zhan, J. Liao, J. Huang, Q. Chen, H. Qiu, H. Cao, *Catal. Comm.* **2014**, *56*, 65.
- **112.** P. V. Kumar, W.-S. Lin, J.-S. Shen, D. Nandi, H. M. Lee, *Organometallics*. **2011**, *30*, 5160.
- **113.** E. J. Hicken, F. P. Marmsater, M. C. Munson, S. T. Schlachter, J. E. Robinson, S. Allen, L. E. Burgess, R. K. DeLisle, J. P. Rizzi, G. T. Topalov, Q. Zhao, J. M. Hicks, N. C. Kallan, E. Tarlton, A. Allen, M. Callejo, A. Cox, S. Rana, N. Klopfenstein, R. Woessner, J. P. Lyssikatos, *ACS Med. Chem. Lett.* **2014**, *5*, 78.

- **114.** J. Koubachi, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Tetrahedron.* **2010**, *66*, 1937.
- **115.** W. J. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai, R. D. Larsen, *Org. Lett.* **2003**, *5*, 4835.
- **116.** M. Parisien, D. Valette, K. Fagnou, *J. Org. Chem.* **2005**, *70*, 7578.
- **117.** B. Liegault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* **2009**, *74*, 1826.
- **118.** D. S. Ermolat'ev, V. N. Gimenez, E. V. Babaev, E. Van der Eycken, *J. Comb. Chem.* **2006**, *8*, 659.
- **119.** J.-X. Wang, J. A. McCubbin, M. Jin, R. S. Laufer, Y. Mao, A. P. Crew, M. J. Mulvihill, V. Snieckus, *Org. Lett.* **2008**, *10*, 2923.
- **120.** S. K. Guchhait, S. Kandekar, M. Kashyap, N. Taxak, P. V. Bharatam, *J. Org. Chem.* **2012**, 77, 8321.
- **121.** V. Gembus, J.-F. Bonfanti, O. Querolle, P. Jubault, V. Levacher, C. Hoarau, *Org. Lett.* **2012**, *14*, 6012.
- **122.** B. M. Johnson, M. P. Huestis, Eur. J. Org. Chem. **2014**, 1589.
- **123.** A. El Akkaoui, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Eur. J. Org. Chem.* **2010**. 862.
- **124.** I. Bassoude, S. Berteina-Raboin, S. Massip, J.-M. Leger, C. Jarry, E. M. Essassi, G. Guillaumet, *Eur. J. Org. Chem.*, **2012**, 2572.
- **125.** L. Pellegatti, E. Vedrenne, J.-M. Leger, C. Jarry, S. Routier, *J. Comb. Chem.* **2010**, *12*, 604.
- **126.** B. Liegault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, *J. Org. Chem.* **2009**, *74*, 1826.
- 127. B. Liu, Z. Wang, N. Wu, M. Li, J. You, J. Lan, Chem. Eur. J. 2012, 18, 1599.
- **128.** B. Koszarna, R. Matczak, M. Krzeszewski, O. Vakuliuk, J. Klajn, M. Tasior, J. T. Nowicki, D. T. Gryko, *Tetrahedron* **2014**, *70*, 225.
- **129.** S. Park, Y. Jung, I. Kim, *Tetrahedron*. **2014**, *70*, 7534.
- **130.** J. Zhang, W. Chen, A. J. Rojas, E. V. Jucov, T. V. Timofeeva, T. C. Parker, S. Barlow, S. R. Marder, *J. Am. Chem. Soc.* **2013**, *135*, 16376.
- **131.** C.-Y. He, C.-Z. Wu, F.-L. Qing, X. Zhang, J. Org. Chem. **2014**, 79, 1712.
- **132.** A. F. P. Biajoli, E. T. da Penha, C. R. D. Correia, *RSC Advances* **2012**, *2*, 11930.
- 133. S. K. Guchhait, M. Kashyap, S. Saraf, Synthesis 2010, 1166.
- 134. H.-O. Do, R. M. K. Khan, O. Daugulis, J. Am. Chem. Soc. 2008, 130, 15185.
- **135.** M. Baghbanzadeh, C. Pilger, C. O. Kappe, *J. Org. Chem.* **2011**, *76*, 8138.
- 136. L. Zhao, C. Bruneau, H. Doucet, Tetrahedron 2013, 69, 7082.
- **137.** A. R. Martin, A. Chartoire, A. M. Z. Slawin, S. P. Nolan, *Beilstein J. Org. Chem.* **2012**, 8, 1637.
- **138.** B. Liegault, I. Petrov, S. I. Gorelsky, K. Fagnou, *J. Org. Chem.* **2010**, *75*, 1047.
- **139.** M. Ionita, J. Roger, H. Doucet, *ChemSusChem.* **2010**, *3*, 367.
- 140. M. Baloch, D. Roy, S. Bensaid, V. Guerchais, H. Doucet, Eur. J. Inorg. Chem. 2012, 4454
- **141.** D. Roy, S. Mom, S. Royer, D. Lucas, J.-C. Hierso, H. Doucet, *ACS Catal.* **2012**, *2*, 1033.
- **142.** A. Carrer, D. Brinet, J.-C. Forent, P. Rousselle, E. Bertounesque, *J. Org. Chem.* **2012**, 77, 1316.
- **143.** B. Liegault, I. Petrov, S. I. Gorelsky, K. Fagnou, *J. Org. Chem.* **2010**, *75*, 1047.
- 144. F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, Tetrahedron 2007, 63, 1970.
- **145.** F. Bellina, S. Cauteruccio, R. Rossi, *Eur. J. Org. Chem.* **2006**, 1379.
- **146.** J. C. Lewis, A. M. Berman, R. G. Bergman, J. A. Ellman, *J. Am. Chem. Soc.* **2008**, *130*, 2493.

- 147. T. Yoshizumi, H. Tsurugi, T. Satoh, M. Miura, Tetrahedron Lett. 2008, 49, 1598.
- 148. Z.-S. Gu, W.-X. Chen, L.-X. Shao, J. Org. Chem. 2014, 79, 5806.
- **149.** J. Canivet, J. Yamaguchi, I. Ban, K. Itami, *Org. Lett.* **2009**, *11*, 1733.
- **150.** N. I. Abdo, A. A. El-Shehawy, A. A. El-Barbary, J. S. Lee, *Eur. J. Org. Chem.* **2012**, 5540.
- **151.** S. El Kazzouli, L. Bouissane, M. Khouili, G. Guillaumet, *Tetrahedron Lett.* **2005**, *46*, 6163.
- **152.** B. Cottyn, F. Acher, B. Ramassamy, L. Alvey, M. Lepoivre, Y. Frapart, D. Stuehr, D. Mansuy, J-L. Boucher, D. Vichard, *Bioorg. Med. Chem.* **2008**, *16*, 5962.
- **153.** a) D. W. Gordon, *Synlett.* **1998**, 1065. b) W. M. Welch, C. E. Hanau, W. M. Whalen, *Synthesis.* **1992**, 937.
- 154. a) A. Amautu, V. Collot, J. C. Ros, C. Alayrac, B. Witulski, S. Rault, *Tetrahedron Lett.* 2002, 43, 2695. b) V. Collot, D. Varlet, S. Rault, *Tetrahedron Lett.* 2000, 41, 4363. c) A. Fraile, M. R. Martín, J-L. García Ruano, J.A. Díaz, E. Arranz, *Tetrahedron.* 2011, 67, 100.
- **155.** L. Bouissane, S. El Kazzouli, E.M.; Rakib, M. Khouili, G. Guillaumet, *Tetrahedron*. **2005**, *61*, 8218.
- **156.** L. Bouissane, S. El Kazzouli, S. Léonce, B. Pfeiffer, E.M. Rakib, M. Khouili, G. Guillaumet, *Bioorg. Med. Chem.* **2006**, *14*, 1078.
- **157.** J. M. Salovich, C. W. Lindsley, C. R. Hopkins, *Tetrahedron Lett.*, **2010**, *51*, 3796.
- 158. a) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, J. Org. Chem. 2007, 72, 7650. b) S. El Kazzouli, S. Berteina-Raboin, L. Agrofoglio, Nucleosides, Nucleotides Nucleic Acids 2007, 26, 1395-1398. c) T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073. d) T. Delaunay, P. Genix, M. Es-Sayed, J-P. Vors, N. Monteiro, G. Balme, Org. Lett. 2010, 12, 3328.
- **159.** S. El Kazzouli, J. Koubachi, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Tetrahedron Lett.* **2006**, *47*, 8575.
- **160.** a) D. Spinks, L.S. Torrie, S. Thompson, J.R. Harrison, J.A. Frearson, K.D. Read, A.H. Fairlamb, P.G. Wyatt, I.H. Gilbert, *ChemMedChem.* **2012**, *7*, 95.
- 161. a) H. An, N-J. Kim, J-W. Jung, H. Jang, J-W. Park, Y-G. Suh, *Bioorg. Med. Chem. Lett.* 2011, 21, 6297. b) C. M. Harris, A. M. Ericsson, M. A. Argiriadi, C. Barberis, D. W. Borhani, A. Burchat, D. J. Calderwood, G. A. Cunha, R. W. Dixon, K. E. Frank, E. F. Johnson, J. Kamens, S. Kwak, B. Li, K. D. Mullen, D. C. Perron, L. Wang, N. Wishart, X. Wu, X. Zhang, T. R. Zmetra, R. V. Talanian, *Bioorg. Med. Chem. Lett.* 2010, 20, 334.
- **162.** S. S. Bhagwat, Y. Satoh, S. T. Sakata, C. A. Buhr, R. Albers, J. Sapienza, V. Plantevin, Q. Chao, K. Sahasrabudhe, R. Ferri, *US Patent*, Appl. Publ., 20040127536 A1, 01 Jul 2004. *Chem.Abstr.* **2004**, 89085, 533982.
- **163.** a) M. M. Heravi, E. Hasshemi, *Tetrahedron.* **2012**, *68*, 9145. b) J. G. Vries, *Top. Organomet. Chem.* **2012**, *42*, 1. c) S. Kotha, K. Lahiri, D. Kashinath, *Tetrahedron.* **2006**, *58*, 9633. d) S. R. Chemler, D. Trauner, S. J. Danishefsky, *Angew. Chem. Int. Ed.* **2001**, *40*, 4544.
- **164.** A. Suzuki, *Angew. Chem. Int. Ed.* **2011**, *50*, 6722.
- **165.** a) G. B. Smith, G. C. Dezeny, D. L. Hughes, A. O. King, T. R. Verhoeven, *J. Org. Chem.* **1994**, *59*, 8151. b) A. O. Aliprantis, J. W. Canary, *J. Am. Chem. Soc.* **1994**, *116*, 6985.
- **166.** A. Yamamoto, Organotransition Metal Chemistry -Fundamental Concepts and Applications. Wiley: New York ed.; **1986**.
- **167.** W. Stadlbauer, *Sci. Synth.* **2002**, *12*, 227.

- 168. a) R. A. Bartsch, I-W. Yang, *J. Heterocycl. Chem.* 1984, 20, 1063. b) E. Noelting, *Berichte.* 1904, 37, 2556. c) E. Lohou, J. Sopkova de Oliveira Santos, P. Schumann-Bard, M. Boulouard, S. Stiebing, S. Rault, V. Collot, *Bioorg. Med. Chem.* 2012, 20, 5296.
- **169.** A. Ben-Yahia, M. Naas, N. El Brahmi, S. El Kazzouli, E.M. Essassi, J-P. Majoral, G. Guillaumet, *Current Org. Chem.* **2013**, *17*, 304.
- **170.** K. V. Auwers, F. V. Meyenburg. *Chem. Ber.* **1891**, *24*, 2370.
- 171. a) A. Stafford, M. Cheung, A. Boloor. *J. Org Chem*, 2003, 68, 4093. b) S. Gamage, J. A. Spicer, G. W. Rewcastle, J. Milton, S. Sohal, W. Dangerfield, P. Mistry, N. Vicker, P. A. Charlton, W. A. Denny. *J. Med. Chem.* 2002, 45, 740. c) A. Vasudevan, A. J. Souers, J. C. Freeman, M. K. Verzal, J. Gao, M. M. Mulhern, D. Wodka, J. K. Lynch, K. M. Engstrom, S. H. Wagaw, S. Brodjian, B. Dayton, D. H. Falls, E. Bush, M. Brune, R. D. Shapiro, K. C. Marsh, L. E. Hernandez, C. A. Collins, P. R. Kym, *Bioorg. Med. Chem. Lett.* 2005, 15, 5293. d) H. C. Zhang, C. K. Derian, D. F. McComsey, K. B. White, H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C. E. Smith, Q. Li, W. M. Cheung, B. R. Conway, S. Emanuel, K. T. Demarest, P. Andrade-Gordon, B. P. Damiano, B. E. Maryanoff, *J. Med. Chem.* 2005, 48, 1725. e) D. J. Slade, N. F. Pelz, W. Bodnar, J. W. Lampe, P. S. Watson, *J. Org. Chem.* 2009, 74, 6331. f) G. Luo, L. Chen, G. Dubowchik, *J. Org. Chem.*, 2006, 71, 5392.
- **172.** a) J. M. Salovich, C. W. Lindsley, C. R. Hopkins, *Tetrahedron Lett.* **2010**, *51*, 3796; b) Y.-C. Teo, F.-F. Yong, G. S. Lim, *Tetrahedron Lett.* **2011**, *52*, 7171.
- 173. S. A. Ohnmacht, A. J. Culshaw M. F. Greaney, Org. Lett. 2010, 12, 224.
- 174. B. Laleu, M. Lautens, J. Org. Chem. 2008, 73, 9164.
- 175. Quelques revues concernant l'arylation d'hétéroarènes voir : a) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* 2007, 36, 1173; b) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174; c) T. Satoh, M. Miura, *Chem. Lett.* 2007, 36, 200; d) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem.* 2009, 121, 9976; *Angew. Chem. Int. Ed.* 2009, 48, 9792; e) F. Bellina, R. Rossi, *Tetrahedron* 2009, 65, 10269; f) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* 2009, 38, 2447. f) K. Yuan, J.-F. Soulé, H. Doucet, *ACS Catalysis.* 2015, 5, 978. g) C. B. Bheeter, L. Chen, J.-F. Soulé, H. Doucet, *Catal. Sci. Technol.* 2016, in press.
- 176. Quelques exemples sélectionnés d'arylation d'hétéroarènes voir: a) K. Hattori, K. Yamaguchi, J. Yamaguchi, K. Itami, Tetrahedron 2012, 68, 7605; b) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhang, J.-Q. Yu, Chem. Sci. 2013, 4, 2374; c) F. Shibahara, E. Yamaguchi, T. Murai, Chem. Commun. 2010, 46, 2471; d) K. Ueda, S. Yanagisawa, J. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2010, 49, 8946; e) S. Potavathri, K. C. Pereira, S. I. Gorelsky, A. Pike, A. P. LeBris, B. DeBoef, J. Am. Chem. Soc. 2010, 132, 14676; f) D. Roy, S. Mom, M. Beaupérin, H. Doucet, J.-C. Hierso, Angew. Chem. Int. Ed. 2010, 49, 6650; g) H. Hachiya, K. Hirano, T. Satoh, M. Miura, Angew. Chem. 2010, 122, 2248; Angew. Chem. Int. Ed. 2010, 49, 2202; h) J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen, M. M. Faul, J. Am. Chem. Soc. **2010**, 132, 3674; i) M. Kitahara, N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2011, 133, 2160; j) J. Kwak, M. Kim, S. Chang, J. Am. Chem. Soc. 2011, 133, 3780; i) R. Takita, D. Fujita, F. Ozawa, Synlett 2011, 959; k) H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, *Org. Lett.* **2012**, *14*, 1688; 1) D. Roy, S. Mom, S. Royer, D. Lucas, J.-C. Hierso, H. Doucet, ACS Catal. 2012, 2, 1033; m) H. Y. Fu, L. Chen, H. Doucet, J. Org. Chem. 2012, 77, 4473. n) S. Grosse, C. Pillard, P. Bernard, G. Guillaumet, Synlett. 2013, 24, 2095. o) S. Grosse, C. Pillard, S. Massip, M. Marchivie, C. Jarry, P. Bernard, G. Guillaumet, J. Org. Chem. 2015, 80, 8539. p) L. Chen, C. Bruneau, P. H. Dixneuf, H. Doucet, Tetrahedron 2013, 69, 4381. g) M. He, J.-F. Soulé, H. Doucet, ChemCatChem. **2014**, 6, 1824. r) K. Yuan, J.-F. Soulé, H. Doucet, ACS Catal. **2015**, 5, 978. s) Takfaoui,

- L. Zhao, R. Touzani, J.-F. Soulé, P. H. Dixneuf, H. Doucet, *Tetrahedron* **2014**, *70*, 8316. t) F. Abdellaoui, C. Youssef, H. Ben Ammar, J.-F. Soulé, H. Doucet, *Synthesis* **2014**, *46*, 3341. u) K. Yuan, J. Boixel, A. Chantzis, D. Jacquemin, V. Guerchais, H. Doucet, *Chemistry*, **2014**, *20*, 10073. v) Smari, H. Ben Ammar, B. Ben Hassine, J.-F. Soulé, H. Doucet, *Synthesis* **2015**, *47*, 3354. w) J.-F. Soulé, H. Doucet, in C–H Bond Activation and Catalytic Functionalization I, *Top. Organomet. Chem.*, *ed.* P. H. Dixneuf, H. Doucet, Springer, **2016**, vol. 55, pp. 103–118.
- **177.** a) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Synlett* **2006**, 3237; b) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *J. Org. Chem.* **2007**, 72, 7650; c) J. Koubachi, S. El Kazzouli, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Synthesis* **2008**, 2537; d) A. El Akkaoui, S. Berteina-Raboin, A. Mouaddib, G. Guillaumet, *Eur. J. Org. Chem.* **2010**, 5, 862; e) I. Bassoude, S. Berteina-Raboin, S. Massip, J.-M. Leger, C. Jarry, E. M. Essassi, G. Guillaumet, *Eur. J. Org. Chem.* **2012**, *13*, 2572. f) S. Grosse, C. Pillard, S. Massip, J. M. Leger, C. Jarry, S. Bourg, P. Bernard, G. Guillaumet, *Chem. Eur. J.* **2012**, *18*, 14943.
- **178.** S. Pivsa-Art, T. Satoh, Y. Kawamura, M. Miura, M. Nomura, *Bull. Chem. Soc. Jpn.* **1998**, *71*, 467.
- **179.** A. Ben-Yahia, M. Naas, S. El Kazzouli, E.M. Essassi, G. Guillaumet, *Eur. J. Org. Chem.* **2012**, *36*, 7075.
- **180.** D. D. Mihaela, D. Robert, T. Ashok, X. Wenge, WO 2010021797 A1, 2010, *Chem.Abstr.* **2010**, 287156, 240836.
- a) J. Roger, A. L. Gottumukkala, H. Doucet, *ChemCatChem.* 2010, 2, 20. b) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem., Int. Ed.* 2009, 48, 9792. c) F. Bellina, R. Rossi, *Tetrahedron.* 2009, 65, 10269. d) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* 2009, 38, 2447. e) J. C. Lewis, R. G. Bergman, J. A. Ellman, *Acc. Chem. Res.* 2008, 41, 1013. f) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* 2007, 36, 1173. g) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174. h) T. Satoh, M. Miura, *Chem. Lett.* 2007, 36, 200.
- **182.** J. Kwak, M. Kim, S. Chang, J. Am. Chem. Soc. **2011**, 133, 3780.
- **183.** a) N. Lebrasseur, I. Larrosa, *In Advances in Heterocyclic Chemistry*; A. R. Ed. Katritzky, Elsevier: Amsterdam, **2012**; Vol. *105*, p 309. b) E. T. Nadres, A. Lazareva, O. Daugulis, *J. Org. Chem.* **2011**, *76*, 471. c) F. Bellina, R. Rossi, *J. Org. Chem.* **2008**, *73*, 5529.
- **184.** M. P. Huestis, K. Fagnou, Org. Lett. **2009**, 11, 1357.
- **185.** a) D. S. Ermolatév, V. N. Gimenez, E. V. Babaev, E. Van der Eycken, *J. Comb. Chem.* **2006**, *8*, 659. (b) W. Li, D. P. Nelson, M. S. Jensen, R. S. Hoerrner, G. J. Javadi, D. Cai, R. D. Larsen, *Org. Lett.* **2003**, *5*, 4835.
- **186.** a) F. Bellina, S. Cauteruccio, R. Rossi, *Eur. J. Org. Chem.* **2006**, 1379. b) F. Bellina, C. Calandri, S. Cauteruccio, R. Rossi, *Tetrahedron*. **2007**, *63*, 1970.
- **187.** A. F. P. Biajoli, E. T. da Penha, C. R. D. Correia, *RSC Adv.* **2012**, *2*, 11930.
- **188.** a) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhanga, J.-Q. Yu, *Chem. Sci.* **2013**, 4, 2374. b) K. Hattori, K. Yamaguchi, J. Yamaguchi, K. Itami, *Tetrahedron.* **2012**, 68, 7605.
- **189.** S. A. Ohnmacht, A. J. Culshaw, M. F. Greaney, *Org. Lett.* **2010**, *12*, 224.
- **190.** a) Y. Aihara, N. Chatani, *Chem. Sci.* **2013**, *4*, 664. b) D.-D. Li, T.-T. Yuan, G.-W. Wang, *J. Org. Chem.* **2012**, *77*, 3341. c) D. Shabashov, O. Daugulis, *Org. Lett.* **2006**, *8*, 2947.
- **191.** a) J. Cornella, M. Righi, I. Larrosa, *Angew. Chem., Int. Ed.* **2011**, *50*, 9429. b) H. A. Chiong, Q. N. Pham, O. Daugulis, *J. Am. Chem. Soc.* **2007**, *129*, 9879. c) R. Giry, N. Maugel, J. J. Li, D. H. Wang, S. P. Breazzano, L. B. Saunders, J. Q. Yu, *J. Am. Chem. Soc.* **2007**, *129*, 3510.
- 192. B. C. Chary, S. Kim, Y. Park, J. Kim, P. H. Lee, Org. Lett. 2013, 15, 2692.

- 193. W. Li, Z. Xu, P. Sun, X. Jiang, M. Fang, Org. Lett. 2011, 13, 1286.
- 194. N. Gürbüz, I. Özdemira, B. Cetinkaya, Tetrahedron Lett. 2005, 46, 2273.
- **195.** a) L. Caron, L.-C. Campeau, K. Fagnou, *Org. Lett.* **2008**, *10*, 4533. b) C. Wang, Y.-B. Yu, S. Fan, X. Zhang, *Org. Lett.* **2013**, *15*, 5004.
- **196.** G. Rouquet, N. Chatani, Angew. Chem., Int. Ed. **2013**, 52, 11726.
- **197.** R. J. Phipps, M. Gaunt, *J. Science*. **2009**, *323*, 1593.
- **198.** a) M. Wasa, B. T. Worrell, J.-Q. Yu, *Angew. Chem., Int. Ed.* **2010**, 49, 1275. b) P. Guo, J. M. Joo, S. Rakshit, D. Sames, *J. Am. Chem. Soc.* **2011**, 133, 16338. c) V. O. Iaroshenko, A. Gevorgyan, O. Davydova, A. Villinger, P. Langer, *J. Org. Chem.* **2014**, 79, 2906.
- **199.** N. Abbassi, H. Chicha, E. M. Rakib, A. Hannioui, M. Alaoui, A. Hajjaji, D. Geffken, C. Aiello, R. Gangemi, C. Rosano, M. Viale, *Eur. J. Med. Chem.* **2012**, *57*, 240.
- **200.** M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, *J. Org. Chem.* **2014**, *79*, 7286.
- **201.** S. V. Keisner, S. R. Shah, *Drugs.* **2011**, *71*, 443.
- 202. a) B. Catanese, A. Lagana, A. Marino, R. Picollo, M. Rotatori, *Pharmacol. Res. Commun.* 1986, 18, 385. b) G. A. Baldock, R. R. Brodie, L. F. Chasseaud, T. J. Taylor, *J. Chromatogr., Biomed. Appl.* 1990, 529, 113. c) D. H. Lang, A. E. Rettie, *Br. J. Clin. Pharmacol.* 2000, 50, 311. d) E. Stormer, I. Roots, J. Brockmoller, *Br. J. Clin. Pharmacol.* 2000, 50, 553.
- 203. a) H. Shen, S. Gou, J. Shen, Y. Zhu, Y. Zhang, X. Chen, Bioorg. Med. Chem. Lett. 2010, 20, 2115. b) L. Saso, B. Silvestrini, Med. Hypotheses. 2001, 56, 114. c) J. J. Harding, Drugs Aging 1992, 2, 287.
- **204.** a) A. Chaturvedula, D. P. Joshi, C. Anderson, R. Morris, W. L. Sembrowich, A. K. Banga, *Pharm. Res.* **2005**, 22, 1313. b) J. Bermudez, C. S. Fake, G. F. Joiner, K. A. Joiner, F. D. King, W. D. Miner, G. J. Sanger, *J. Med. Chem.* **1990**, *33*, 1924.
- 205. a) S. Ballesteros, M. F. Ramon, R. Martinez-Arrieta, *Clin. Toxicol.* 2009, 47, 150. b) S. Manzardo, R. Girardello, A. Pinzetta, G. Coppi, D. De Aloysio, *Boll. Chim. Farm.* 1992, 131, 113. c) S. Pugliares, M. Jacobellis, *Minerva Ginecol.* 1991, 43, 245.
- **206.** a) A. Veerareddy, G. Surendrareddy, P. K. Dubey, *Synth. Commun.* **2013**, *43*, 2236. (b) I. G. George, J. S. Tash, R. Chakrasali, J. Sudhakara Rao, J. P. Calvet, U.S. Patent 20090197911, 2009, *Chem.Abstr.* **2009**, *151*, 236718.
- 207. Pour des articles récents concernant la C-H alcénylation, voir: D.-H. Wang, K. M. Engle, B.-F. Shi, J.-Q. Yu, *Science*. 2010, 327, 315. b) A. S. Tsai, M. Brasse, R. G. Bergman, J. A. Ellman, *Org. Lett.* 2011, 13, 540. c) B. Liu, Y. Fan, Y. Gao, C. Sun, C. Xu, J. Zhu, J. Am. Chem. Soc. 2013, 135, 468. d) L. Huang, Q. Wang, J. Qi, X. Wu, K. Huang, H. Jiang, Chem. Sci. 2013, 4, 2665. e) A. Deb, S. Bag, R. Kancherla, D. Maiti, J. Am. Chem. Soc. 2014, 136, 13602.
- 208. Pour des revues récentes concernant la C-H alcénylation, voir: a) H. Cho, S. J. Y. Kim, J. Kwak, S. Chang, *Chem. Soc. Rev.* 2011, 40, 5068. b) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, *Angew. Chem., Int. Ed.* 2012, 51, 10236. c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, *Acc. Chem. Res.* 2012, 45, 814. d) G. Song, F. Wang, X. Li, *Chem. Soc. Rev.* 2012, 41, 3651. e) L. Zhou, W. Lu, *Chem. Eur. J.* 2014, 20, 634.
- 209. Pour des références récentes de la CH-alcénylation d'hétéroarènes, voir : a) B. Gong, J. Shi, X. Wang, Y. Yan, Q. Li, Y. Meng, H. E. Xu, W. Yi, *Adv. Synth. Catal.* 2014, *356*, 137. b) Y. Su, H. Zhou, J. Chen, J. Xu, X. Wu, A. Lin, H. Yao, *Org. Lett.* 2014, *16*, 4884. c) D. Kang, J. Cho, P. H. Lee, *Chem. Commun.* 2013, *49*, 10501. d) W. Liu, S. Wang, Q. Zhang, J. Yu, J. Li, Z. Xie, H. Cao, *Chem. Asian J.* 2014, *9*, 2436. e) Á. M. Martínez, N. Rodríguez, R. G. Arrayás, J. C. Carretero, *Chem. Commun.* 2014, *50*, 6105. (f) J. Tang,

- M. Cong, Y. Xia, G. Quéléver, Y. Fan, F. Qu, L. Peng, *Org. Biomol. Chem.* **2015**, *13*, 110. g) Z.-L. Yan, W.-L. Chen, Y.-R. Gao, S. Mao, Y.-L. Zhang, Y.-Q. Wang, *Adv. Synth. Catal.* **2014**, *356*, 1085. h) K. Wu, P. Wu, L. Wang, J. Chen, C. Sun, Z. Yu, *Adv. Synth. Catal.* **2014**, *356*, 3871. i) C.-E. Kim, J.-Y. Son, S. Shin, B. Seo, P. H. Lee, *Org. Lett.* **2015**, *17*, 908.
- **210.** a) V. Lanke, K. R. Prabhu, *Org. Lett.* **2013**, *15*, 2818. b) J. Shi, Y. Yan, Q. Li, H. E. Xu, W. Yi, *Chem. Commun.* **2014**, *50*, 6483.
- **211.** a) M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhang, J.-Q. Yu, *Chem. Sci.* **2013**, 4, 2374.
- **212.** a) C. Jia, T. Kitamura, Y. Fujiwara, *Acc. Chem. Res.* **2001**, *34*, 633. b) E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, *Chem. Rev.* **2007**, *107*, 5318. c) J. Tsuji, *Palladium Reagents and Catalysts*, 2nd ed.; John Wiley & Sons: Chichester, U.K., **2004**.
- **213.** a) T. Itahara, M. Ikeda, T. Sakakibara, *J. Chem. Soc.*, *Perkin Trans. I.* **1983**, 1361. b) T. Itahara, K. Kawasaki, F. Ouseto, *Synthesis* **1984**, 236.
- **214.** N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, *Angew. Chem., Int. Ed.* **2005**, *44*, 3125.
- **215.** Y. Yokoyama, T. Matsumoto, Y. Murakami, *J. Org. Chem.* **1995**, *60*, 1486.
- 216. E. Capito, J. M. Brown, A. Ricci, Chem. Commun. 2005, 1854.
- 217. A. L. Gottumukkala, F. Derridj, S. Djebbar, H. Doucet, Tetrahedron Lett 2008, 49, 2926.
- 218. Y. Yang, K. Cheng, Y. Zhang, Org. Lett., 2009, 11, 5606.
- 219. J. Zhao, L. Huang, K. Cheng, Y. Zhang, Tetrahedron Lett 2009, 50, 2758.
- **220.** R. Vabre, F. Chevot, M. Legraverend, S. Piguel, J. Org. Chem. **2011**, 76, 9542.
- **221.** W. Liu, S. Wang, H. Zhan, J. Lin, P. He, Y. Jiang, *Tetrahedron Lett* **2014**, *55*, 3549.
- **222.** D. Yang, S. Mao, Y.-R. Gao, D.-D. Guo, S.-H. Guo, B. Li, Y.-Q. Wang, *RSC Advances*. **2015**, *5*, 23727.
- 223. T. Morita, T. Satoh, M. Miura, Org. Lett. 2015, 17, 4384.
- **224.** M. Cheung, A. Boloor, J. A. Stafford, *J. Org. Chem.* **2003**, *68*, 4093.
- 225. Quelques articles concernant la contraception masculine, voir: a) G. Corsi, G. Palazzo, C. Germani, P. S. Barcellona, B. Silvestrini, J. Med. Chem. 1976, 19, 778. b) G. Palazzo, G. Corsi, L. Baiocchi, B. Silvestrini, J. Med. Chem. 1966, 9, 38. c) B. Silvestrini, Chemotherapy 1981, 27(Suppl.2), 9. d) B. Silvestrini, G. Palazzo, M. D. De Gregorio, Progr. Med. Chem. 1985, 21, 111. e) C. Y. Cheng, B. Silvestrini, J. Grima, M. Y. Mo, L. J. Zhu, E. Johnsson, L. Saso, M. G. Leone, M. Palmery, D. Mruk, Biol. Reprod. 2001, 65, 449. f) W. Xia, D. D. Mruk, W. M. Lee, C. Y. Ceng, J. Endocrinol. 2007, 192, 563. g) J. S. Tash, B. Attardi, S. A. Hild, R. Chakrasali, S. R. Jakkarg, G. I. Georg, Biol. Reprod. 2008, 78, 1127. h) O. Sarkar, Mathur, P. P. Mol. Reprod. Dev. 2009, 76, 31. i) K.-W. Mok, D. D. Mruk, P. P. Y. Lie, W.-Y. Lui, C. Y. Cheng, Reproduction. 2011, 141, 571. j) H. Wang, X. X. Chen, L.-R. Wang, Y.-D. Mao, Z. M. Zhou, J.-H. Sha, Asian J. Androl. 2010, 12, 322.
- **226.** a) A. Veerareddy, G. Surendrareddy, P. K. Dubey, *Synth. Commun.* **2013**, *43*, 2236. b) A. Veerareddy, G. Surendrareddy, P. K. Dubey, *J. Heterocycl. Chem.* **2014**, *51*, 1311.
- **227.** R. Waditschatka, *Chem. Abstr.* **2000**, *133*, 296279.
- **228.** G. I. Georg, J. S. Tash, R. Chakrasali, S. R. Jakkaraj. U.S. Patent WO 2006/023704, 2006. *Chem.Abstr.* **2006**, *144*, 274268.
- **229.** M. Naas, S. El Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, *Org. Lett.*, **2015**, *17*, 4320.
- **230.** N. Anand. Sulfonamides and Sulfoness. In *Burger's Medicinal Chemistry and Drug Discovery, Therapeutic Agents*, 5<sup>th</sup> ed.; Wolff, M. E., Ed.; J. Wiley & Sons: New York, **1996**, 2, 527.

- **231.** A. Scozzafava, T. Owa, A. Mastrolorenzo, C. T. Supuran, *Curr. Med. Chem.*, **2003**, *10*, 925.
- 232. C. T. Supuran, A. Scozzafava, A. Casini, *Med. Res. Rev.*, 2003, 23, 146.

  <sup>233.</sup> A. Casini, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, *Curr. Cancer Drug Targets*, 2002, 2, 55.
- 234. T. Owa, T. Nagasu, Exp. Opin. Ther. Pat., 2000, 10, 1725.
- 235. C. T. Supuran, A. Scozzafava, Exp. Opin. Ther. Pat., 2002, 12, 217.
- 236. C. T. Supuran, A. Scozzafava, Curr. Med. Chem. Imm., Endoc. Metab. Agents, 2001, 1, 61.
- **237.** C. T. Supuran, A. Scozzafava, Exp. Opin. Ther. Pat. **2000**, 10, 575.
- **238.** T. Owa, H. Yoshino, T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T. Nagasu, N. Koyanagi, K. Kitoh, *J. Med. Chem.* **1999**, *42*, 3789.
- **239.** T. Owa, T. Okauchi, K. Yoshimatsu, N. H. Sugi, Y. Ozawa, T. Nagasu, N. Koyanagi, T. Okabe, K. Kitoh, H. Yoshino, *Bioorg. Med. Chem. Lett.*, **2000**, *10*, 1223.
- **240.** H. Yoshino, N. Ueda, J. Nijima, H. Sugumi, Y. Kotake, N. Koyanagi, K. Yoshimatsu, M. Asada, T. Watanabe, T. Nagasu, K. Tsukahara, A. Iijima, K. Kitoh, *J. Med. Chem.*, **1992**, *35*, 2496.
- **241.** T. Owa, H. Yoshino, K. Yoshimatsu, T. Nagasu, *Curr. Med. Chem.*, **2001**, *8*, 1487.
- **242.** T. Watanabe, N. Sugi, Y. Ozawa, T. Owa, T. Nagasu, K. N. yanagi, K. Kitoh, K. Yoshimatsu, *Proc. Am. Assoc. Cancer Res.*, *Washington*, *DC*, **1996**, *37*, 391 (abstr.2667).
- **243.**Y. Funahashi, N. H. Sugi, T. Semba, Y. Yamamoto, S. Hamaoka, T. N. Tsukahara, Y. Ozawa, A. Tsuruoka, K. Nara, K. Takahashi, T. Okabe, J. Kamata, T. Owa, N. Ueda, T. Haneda, M. Yonaga, K. Yoshimatsu, T. Wakabayashi, *Cancer Res.*, **2002**, *62*, 6116.
- **244.** Y. Ozawa, N. H. Sugi, T. Nagasu, T. Owa, T. Watanabe, N. Koyanagi, H. Yoshino, K. Kitoh, K. Yoshimatsu, *Eur, J. Cancer*, **2001**, *37*, 2275.
- **245.** C. Terret, S. Zanetta, H. Roché, J. H. M. Schellens, M. N. Faber, J. Wanders, M. Ravic, J. P. Droz, *Eur. J. Cancer*, **2003**, *39*, 1097.
- **246.** T. Owa, H. Yoshino, T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T. Nagasu, N. Koyanagi, K. Kitoh, *J. Med. Chem.* **1999**, *42*, 3789.
- **247.** B. Hakan, L. Matti, N. Stinabritt, T.Camilla. U.S. Patent WO 2008/079073, 2008, *Chem.Abstr.* **2008**, *149*, 104715.
- **248.** P. A. Procopiou, A. J. Ford, R. H. Graves, D. A. Hall, S. T. Hodgson, Y. M.L. Lacroix, D. Needham, R. J. Slack, *Bioorg. Med. Chem. Lett.* **2012**, 22, 2730.
- 249. a) N. Abbassi, E.M. Rakib, A. Hannioui, M. Alaoui, M. Benchidmi, E.M Essassi, D. Geffken, *Heterocycles*. 2011, 83, 891. b) N. Abbassi, E. M. Rakib, L. Bouissane, A. Hannioui, M. Khouili, A. El Malki, M. Benchidmi, E. M. Essassi, *Synth. Commun*. 2011, 41, 999. c) N. Abbassi, E. M. Rakib, H. Chicha, L. Bouissane, A, Hannioui, C. Aiello, R. Gangemi, P. Castagnola, C. Rosano, M. Viale, *Arch. Pharm. Chem. Life Sci.* 2014, 347, 423. d) N. Abbassi, H. Chicha, E. M Rakib, A. Hannioui, M. Alaoui, A. Hajjaji, D. Geffken, C. Aiello, R. Gangemi, C. Rosano, M. Viale, *Eur. J. Med. Chem.* 2012, 57, 240. e) A. Kouakou, H. Chicha, E. M. Rakib, A. Gamouh, A. Hannioui, M. Chigr, M. Viale, *J. Sulfur Chem.* 2015, 36, 86.
- **250.** F. D. Bellamy, K. Ou, *Tetrahedron Lett.*, **1984**, *25*, 839.
- **251.** G. L. Grunewald, V. M. Paradkar, B. Pazhenchevsky, M. A. Pleiss, D. J. Sall, W. L. Seibel, T. J. Reitz, *J. Org. Chem.*, **1983**, *48*, 2321.
- **252.** L. Bouissane, S. El Kazzouli, M. E. Rakib, M. Khouili, J.-M. Leger, C. Jarry, G. Guillaumet, *Tetrahedron* **2005**, 61, 8218
- **253.** I.-C. Grig-Alexa, I. Simionescu, O.-I. Patriciu, S. Massip, A.-L. Finaru, C. Jarry, J.-M. Leger, G. Guillaumet, *Tetrahedron Lett.* **2012**, *53*, 1885.
- **254**. K. Yuan, H. Doucet, *ChemCatChem.* **2013**, *5*, 3495.

#### Références Bibliographiques

- **255.** H. Fu, H. Chen, H. Doucet, *Appl. Organomet. Chem.* **2013**, 27, 595.
- 256. S. Bensaid, H. Doucet, ChemSusChem. 2012, 5, 1559.
- **257.** J. Roger, F. Pozgan, H. Doucet, *Adv. Synth. Catal.* **2010**, *352*, 696.
- 258. J. Roger, A. L. Gottumukkala, H. Doucet, ChemCatChem. 2010, 2, 20.
- **259.** F. Derridj, A. L Gottumukkala, S. Djebbar, H. Doucet, *Eur. J. Inorg. Chem.* **2008**, *16*, 2550.
- **260.** F. Derridj, S. Djebbar, O. Benali-Baitich, H. Doucet, *J. Organomet. Chem.* **2008**, 693, 135.
- 261. M. Sarkar, H. Doucet, J. K. Bera, Chem. Commun. 2013, 49, 9764.
- **262.** H. Y. Fu, H. Doucet, Eur. J. Org. Chem. **2011**, 7163
- **263.** J. J. Dong, D. Roy, R. Jacob Roy, M. Ionita, H. Doucet, *Synthesis* **2011**, 3530.
- **264.** J. Roger, H. Doucet, *Tetrahedron* **2009**, *65*, 9772.

# Mohammed NAAS Synthèse et fonctionnalisation de nouveaux dérivés d'indazoles à visée thérapeutique

#### Résumé:

L'accès à de nouveaux composés hétérocycliques originaux biologiquement actifs nécessite la mise au point de nouvelles méthodes de synthèse rapides et efficaces. Dans ce contexte, nous nous sommes intéressés à la réactivité des indazoles.

Dans la première partie, nous avons étudié la sélectivité des couplages de type Suzuki, pour fonctionnaliser la position 3 d'indazoles possédant la fonction NH libre. Par la suite, un nouveau procédé d'(hétéro)arylation direct pallado-catalysé régiosélectif a été mis à profit pour synthétiser des indazoles fonctionnalisés tant sur la position 3 que sur le sommet 7. Nous avons ensuite montré la possibilité d'accéder à des entités disubstituées indazoliques en une seule étape, *via* une procédure "one-pot".

Afin d'accroître la diversité autour du noyau indazole, nous avons mis au point une réaction d'alcénylation oxydative pallado-catalysée, des (2*H*)- et (1*H*)-indazoles sur les sommets C-3 et C-7. Pour exemplifier cette méthodologie, nous avons développé une synthèse en trois étapes du Gamendazole, composé actuellement en phase clinique pour la contraception masculine et ce, en utilisant l'alcénylation directe en C3 d'(1*H*)-indazoles convenablement fonctionnalisés.

Le dernier volet de ce mémoire a été consacré à la préparation de composés à structure indazolique contenant une fonction sulfonamide afin de générer des librairies de dérivés substitués par un tel motif, dans le but de les tester biologiquement dans le domaine des anticancéreux.

**Mots-clés** : indazoles, Suzuki-Miyaura, (hétéro)arylation directe, alcénylation directe, one-pot, réactions pallado-catallysées.

# Synthesis of new indazoles derivatives with therapeutic potential

#### **Summary:**

Access to new biologically active compounds requires the development of new rapid and efficient methods for the synthesis of original heterocyclic scaffolds. In this context, we decided to focus particularly on the reactivity of indazoles.

First, we studied the selectivity of Suzuki cross-coupling reaction to functionalize position 3 of the indazole with the free NH function. Indeed, we have described the first example of the direct and regioselective palladium-catalyzed (hetero)arylation of indazoles, the reaction may be induced to occur at either in position 3 and 7. We then showed the possibility of "one-pot" synthesis of disubstituted indazolic entities

Moreover, in order to increase diversity around the indazole scaffold, we developed a direct and regioselective alkenylation of (2H)- and (1H)-indazoles by oxidative palladium catalyzed at the C-3 and C-7, then we envisaged a three staps synthesis of Gamendazole, molecule currently in clinical phase for male contraception, by using the direct alkenylation at C3 of the suitably functionalized (1H)-indazoles.

The last part of this report was dedicated to the preparation of indazoles containing a sulphonamide function, with the aim of biological testing them as potentially anti-cancer candidates. **Keywords:** indazoles, suzuki-Miyaura cross-coupling, direct (hetero)arylation, direct alkenylation, one-pot, palladium-catalyzed reactions.



Institut de Chimie Organique et Analytique (ICOA)

Rue de Chartres, B.P. 6759 45067 Orléans Cedex 2 - France

