(v “ - ’ 1 .
fﬂﬁ/ﬁﬁéﬁﬁ UNIVERSITE D’ORLEANS ..||I||”I‘

il
UNIVERSITE D'ORLEANS

ECOLE DOCTORALE MATHEMATIQUES, INFORMATIQUE,
PHYSIQUE THEORIQUE ET INGENIERIE DES SYSTEMES

LABORATOIRE D’INFORMATIQUE FONDAMENTALE D’ORLEANS
HUAWEI PARIS RESEARCH CENTER

TH ESE présentée par :
Thibaut TACHON

soutenue le : 28 Juin Décembre 2019
pour obtenir le grade de : Docteur de I'université d’Orléans

Discipline : Informatique

Génération automatique de code parallele isochrone

THESE DIRIGEE PAR :
Frédéric LOULERGUE Professeur, Northern Arizona University

et Université d’Orléans

RAPPORTEURS :
Franck POMMEREAU Professeur, Université d’Evry
John MULLINS Professeur, Ecole Polytechnique de Montréal
JURY :
Gaétan HAINS Ingénieur-Chercheur, Huawei Technologies
Wijnand SUIJLEN Ingénieur-Chercheur, Huawei Technologies

Jean-Michel COUVREUR Professeur, Université d’Orléans

RESUME ETENDU EN FRANCAIS

INTRODUCTION

Un monde parallele

Les ordinateurs paralleles sont partout aujourd’hui depuis les montres con-
nectées a deux coeurs jusqu’aux super-ordinateurs aux millions de coeurs.
La fréquence d’horloge des processeurs a stagné pendant des années et
I'accroissement du nombre de processeurs ou coeurs est devenu le seul moyen
pour augmenter la puissance de calcul. Programmer un processeur (i.e. program-
mation séquentielle) est difficile. Programmer plusieurs processeurs (i.e. program-
mation parallele) demande de programmer non seulement leurs taches locales
mais aussi leurs communications. Cela demande plus de travail et procure donc
davantage d’opportunité aux erreurs. Les conséquences des erreurs de program-
mation varient d’une altération imperceptible de la couleur d"un pixel jusqu’a
I’explosion d’une fusée. Il n’est donc pas exagéré de dire que l'aide aux pro-
grammeurs peut étre une question de vie ou de mort. La programmation paral-
lele est en général plus dure que la programmation séquentielle et réclame donc
encore davantage d’aide. Par exemple, une erreur bien connue de la program-
mation paralleéle est 'interblocage, une erreur arrivant quand des processeurs
s’attendent les uns les autres pour toujours. Plusieurs approches existent pour

aider les programmeurs paralléles a éviter ces erreurs.

Rendre le monde paralléle meilleur

Les modeles tel que le modeéle parallele isochrone BSP [60] restreint le pro-
grammeur pour 'empécher de commettre de nombreuses erreurs. Par exem-
ple, si le modele est respecté, il force tous les processeurs a synchroniser en
méme temps, prévenant ainsi les risques d’interblocage. Restreindre le program-

meur peut néanmoins cofiter cher en performance. Ce compromis entre stireté

111

et performance est analogue a ’efficacité des langages de bas niveau (e.g. assem-
bleur ou C) contre la stireté apportée par les langages (bien fait) de haut niveau
(e.g. OCaml).

La vérification cherche a analyser des programmes pour dire au program-
meurs les erreurs qu’il a commise. La vérification peut analyser des programmes
écrits statiquement ou des programmes en exécution dynamiquement. Cette
méthode peut étre ajoutée aux précédentes pour vérifier des propriétés qui ne
sont pas assurées par le modeéle. Il peut aussi vérifier le respect du modele, par
exemple, si tous les processeurs synchronisent au méme moment [27], ce qui est

une condition nécessaire & BSP.

La certification prouve qu'un programme satisfait une spécification [42]. La
spécification d'un programme est la description mathématique des conditions
nécessaires qu'un programme doit remplir pour étre correct. Cette approche est
la seule qui assure 1'absence compléte d’erreurs dans le programme écrit. Cette
méthode réclame cependant un travail considérable, méme avec des outils adap-
tés, comme Coq. Coq [53] est un assistant de preuve pouvant étre utilisé pour la
preuve de théories mathématiques mais est aussi un langage de programmation

depuis lequel un programme certifié peut étre extrait.

La génération de programmes (i.e. code) depuis un langage de haut niveau
procure a la fois la stireté du langage source et les performances du langage cible.
Les compilateurs sont généralement responsables de cette traduction et appor-
tent souvent quelque vérification statique avant la génération de code. Par exem-
ple, BSML est une bibliotheque BSP de haut niveau, sans interblocage, pouvant
étre compilés vers une bibliotheque efficace de bas niveau telle que MPI. MPI ne
prévient normalement pas 1’apparition d’interblocage mais il le fait quand il est
généré depuis BSML. Quelques exemples de compilateurs certifiés existent qui
garantissent que le programme compilé préserve la sémantique du programme

source.

Portes vers le monde paralléle

Nous avons développé cette derniere approche pour générer du code parallele
BSP depuis des programmes séquentiels. Avoir le modele parallele BSP en tant
que cible, rend notre génération plus facile de la méme facon que les modeles
facilitent la programmation parallele. BSP apporte aussi un modéle de cotit pour

iv

anticiper le temps d’exécution d'un programme qui présente une valeur ajoutée
intéressante a notre travail. La certification est trop fastidieuse pour étre traitée
durant les phases initiales de la conception et la ralentirait considérablement.
Cependant, nous avons toujours pris en compte la certification future de nos
approches.

La génération automatique de code séquentiel a usage général est un prob-
leme profond et difficile mais en restreindre l'application nous permet d’étre
plus efficace. Ainsi, deux domaines spécifiques furent ciblés avec différentes
techniques utilisées pour chacun d’entre eux.

Automates BSP pour la recherche par expression réguliére

Les automates BSP (BSPA) et expressions régulieres BSP (BSPRE) furent intro-
duites par Hains [19] en 2016. Nous avons développé cette théorie a travers trois

transformations principales qui manquaient a la théorie jusqu’alors.

La génération d’automates BSP a partir d’expressions régulieres BSP. Cette
transformation est analogue a la transformation fondamentale depuis des ex-
pressions régulieres vers des automates finis non-déterministes reconnaissant le
méme langage [59, 7, 6]. Il peut étre compris comme la compilation de BSPRE,
représentant un langage BSP, vers un BSPA, une machine reconnaissant les mots
BSP appartenant a ce langage.

La déterminisation des automates BSP pour les rendre plus efficaces. Les au-
tomates et les automates BSP sont en général non déterministes. Cela veut dire
que plusieurs transitions avec la méme étiquette depuis le méme état existent,
ce qui donne naissance a une ambiguité. Pendant la recherche, cette ambiguité
force un choix qui, si faux, force a revenir en arriere, perdant un temps précieux
pour des applications telle que la recherche par expression réguliere. Dans notre
cas, les BSPA non-déterministes peuvent étre vus comme des machines a état
finis abstraites et leur déterminisation en BSPA déterministe est une compilation

en code parallele exécutable.

La parallélisation d’expression réguliére en expression réguliere BSP. Cette
transformation est dépendante de la distribution des données vers les pro-
cesseurs. Elle calcule une BSPRE prenant en compte toute les divisions possi-
bles des données d’entrée durant la distribution. Etant donné une représentation

séquentielle, cette transformation retourne une représentation BSP qui constitue

la premiere étape nécessaire a une compilation vers du code BSP.

La composition des trois transformations précédentes qui commence par la
parallélisation d’expression réguliere en BSPRE, suivie par la génération de BSPA
non déterministe terminée par déterminisation en BSPA déterministe permet la

recherche a 'aide d’expression réguliere en parallele.

Langage spécifique pour les calculs de tenseur

Nous nous sommes intéressés aux réseaux de neurones, un domaine recevant
en ce moment beaucoup de concentration et de contribution. Les réseaux de
neurones sont généralement basés sur les graphes de calculs implémentés avec
des tenseurs (i.e. tableaux multidimensionnels). Des travaux récents tels que Re-
lay [54] remplacent ces graphes de calcul par un langage de programmation.
Cependant, les travaux existants présentent selon nous trop de fonctionnalités,
rendant les méthodes formelles (e.g. vérification et certification) plus difficiles a
mettre en oeuvre. Nous avons congu un petit langage spécifique avec peu de
primitives dont la composition fonctionnelle est suffisante pour ce domaine. Ce
langage est compilé vers du code BSP et constitue ce faisant un autre exemple

de code parallele BSP généré depuis un programme séquentiel.

Publications

Cette section présente nos articles acceptés:

1. Thibaut Tachon, Chong Li, Gaétan Hains, and Frédéric Loulergue.
Automated generation of BSP automata. Parallel Processing Letters,
27(01):1740002, 2017. DOI 10.1142/50129626417400023.

2. Gaétan Hains, Thibaut Tachon and Youry Khmelevsky. From natural lan-
guage to graph queries. In The annual IEEE Canadian conference on Electrical
and computer engineering (CCECE), 2019. En cour de publication.

3. Thibaut Tachon. Parallel Matching of Regular Expressions with BSP Au-
tomata. In The International Symposium on Formal Approaches to Parallel and
Distributed Systems (4PAD), 2019. En cour de publication.

vi

Bien que l'article 2 peut aussi étre considéré comme une compilation d'un
langage séquentiel (langage naturel) vers un programme BSP (parce qu’il ex-
iste une implantation BSP pour le traitement de requéte de graphe), ce papier
présente principalement des travaux d’étudiants et sa contribution est davantage
d’ordre pédagogique que technique. Ainsi, ce papier n’a pas été étendu par le

document présent.

Organisation

Le résumé est organisé comme suit.

Nous commencons par présenter la création d’automates BSP. Une preuve
mathématique informelle est donné en annexe A. Bien que nous n’ayons pas
eu le temps de compléter cette preuve pour tous les cas, nous en avons com-
plété suffisamment pour couvrir tous les cas nécessité par 1'application de BSPRE
pour la recherche parallele par RE. Nous poursuivons avec la description détail-
lée de la Déterminisation d’automates BSP, succédé par 1’application de BSPRE
pour la recherche parallele par RE. Cette application inclue la parallélisation
d’expression réguliere et l'implantation de la composition des trois transfor-
mations qui est évaluée par rapport a une approche standard de la recherche

parallele par expression réguliere.

Nous étudions ensuite la Programmation de tenseurs avec BSP. Nous conclu-

ons ce document et présentons les travaux futur.

DES EXPRESSIONS REGULIERES BSP AUX AUTOMATES BSPP

Cette section introduit 1’algorithme de génération de BSPA acceptant le méme
langage qu'une BSPRE donnée. Cette transformation est fondamentale pour la
théorie des automates BSP puisqu’elle permet de construire un automate BSP
dont le langage est connu. Elle est a la théorie des automates BSP ce qu’est
I'algorithme de Thompson [59] ou celui de Glushkov [8] a la théorie des auto-
mates finis. Cette transformation est aussi le premier pas de notre systéme de

reconnaissance parallele par expression réguliere.

vii

(X, p) bspre (X, p) bspa

Desynchronization Synchronization

(BruggemannKlein)?
((Z U y) re)p —G(Z U y) nfg)rj

Figure 1 — Schéma de la transformation de BSPRE i BSPA

Cet algorithme est divisé en trois parties représentées dans la fig. 1, cha-
cune décrite respectivement dans les sections Désynchronisation, D’expression

réguliere a automate fini et Synchronisation.

Désynchronisation

Cette transformation transforme une BSPRE dont I’alphabet est X et la longueur
de ses vecteurs est p en un seul vecteur de longueur p dont les éléments sont des
expressions régulieéres comportant la structure globale des BSPRE répliquée ainsi
que la structure locale respective des RE. La différence entre structure locale et
globale est marquée par un point-virgule concaténé a la partie locale. Ce point-
virgule est annoté par l'identifiant du vecteur dont il est issu. L'ensemble de
ces point-virgules annotés est noté .. Ainsi, le type de sortie est un vecteur de
taille p d’expressions régulieres dont 1’alphabet est celui d’origine élargit par les
point-virgules.

Exemple 1 : Nous choisissons cette BSPRE simple en entrée de notre algorithme

pour l'illustrer.

R = ((a,b)+{c,d))e, f)

Le langage BSP de cette expression est {(a,b)(e, f), (c,d){e f)} et
I'application de la désynchronisation a R résulte en

Dsn(R) =((a;o+cn)en , (bo+d;1) fn)

D’expression réguliere a automate fini

L’étape suivante consiste a appliquer une transformation classique d’expression
réguliere vers un automate a chacun des membres du vecteur. La transformation

que nous avons choisie est celle de Briiggemann-Klein [6] (une amélioration de

viii

celle de Glushkov [8]) qui a la propriété d’avoir un état par symbole et nous
assure 'existence d’états correspondant aux point-virgules.

Exemple 1 (continuant de la page viii) :1’application de l’algorithme de
Briiggemann-Klein a tous les membres de la désynchronisation de R retourne

ainsi
4 N
BKP(Dsn(R)) =
(& J
Synchronisation

La synchronisation consiste a joindre les automates avec des transitions globales

dont les sources et destinations sont celles des transitions point-virgules.

Exemple 1 (continuant de la page ix) : la synchronisation du vecteur d’automate

retourne ainsi
Sync(BK?(Dsn(R))) =

DETERMINISATION D’AUTOMATES BSP

Les BSPA produits des BSPRE par la transformation introduite dans la section
précédente sont (généralement) non-déterministes. Pour faire en sorte que les
automates BSP soient plus que des outils théoriques, la premiere étape est la
déterminisation. Le déterminisme représente l’annihilation des ambiguités en

prévenant les retours en arriere durant la recherche et ainsi évite toute perte

iX

d’efficacité. Dans cette section, les automates non-déterministes seront dénotés
par NBSPA et les automates déterministes par DBSPA.

Identification du probléme

Regardons la figure 2. L'identifiant du composant de vecteur (i.e. numéro du
processeur) est écrit en indice de 1'identifiant d’état.

4 A

indéterminisme local

indéterminisme global

Figure 2 — NBSPA comportant le langage L = {(s,a)(a, a), (s, €){(a,b), (s,€)(b,a)}

Dans cette figure, deux types d’indéterminisme sont représentés.
L'indéterminisme des transitions locales est dénoté par une source et éti-
quette commune pour une destination différente. Lorsque des transitions glob-
ales ont des sources identiques mais des destinations différentes, il s’agit

d’indéterminisme global.

Solution par indexage

Nous traitons l'indéterminisme local en utilisant 1’algorithme classique de con-
struction par sous-ensemble entre les transitions globales. L'indéterminisme
global est plus complexe comme en témoigne la figure 2. Si nous fu-
sionnions naivement les états 3¢ et 4y ainsi que 3; et 4; pour ré-
soudre l'indéterminisme global, alors le langage BSP deviendrait L =
{(s,a)(a,a), (s, €)(a,b),(s,€)(b,a),(s,e)(a,a),(s,€)(bb)} qui est différent de
celui d’origine. Pour pallier a ce probleme, nous dupliquons les états atteignables
par les différents vecteurs de sortie des transitions globales en les indexant sé-
parément. Ainsi, la déterminisation de la figure 2 donne (avec les index en

exposants):

X

Figure 3 — Déterminisation du NBSPA de fig. 2

BSPRE POUR LA RECHERCHE PARALLELE PAR RE

Les applications de recherche par expression réguliere varient des applica-
tions courantes telle que grep[17] aux applications spécialisées incluant par ex-
emple I'inspection de paquets employée notamment par les pare-feux [50, 35, 61,
16]. La plupart des techniques existantes utilisées pour la recherche en parallele
par expression réguliére simulent une exécution depuis un ensemble des états
de l'automate [24, 48, 16]. D’autres techniques transforment 1’automate en une
forme propice a I'exécution parallele [56], ou reposent sur du matériel dédié tel
que les FPGAs [37, 40] ou TCAMSs [47].

La nouvelle approche que nous introduisons se concentre sur les expressions
régulieres (RE) en les transformant en une forme parallele (BSPRE) et en déri-
vant l'automate paralléle (BSPA) (voir figure 4). Notre approche commence par
transformer 1’expression réguliére en une forme intermédiaire. Afin de recon-
naitre des données distribuées parmi p processeurs, 'expression réguliére doit
aussi étre distribuée et la forme intermédiaire facilite cette étape. Les parties
distribuées sont insérées dans des vecteurs de taille p, chacun représentant une
potentielle distribution des données. La BSPRE finalement obtenue est la dis-
jonction de ces vecteurs.

xi

J

Figure 4 — Schéma de reconnaissance paralléle

Notre approche a été testée face a une approche standard de la reconnais-
sance parallele par expression réguliere. Les résultats montrent que notre ap-
proche est tres efficace pour un petit nombre de processeurs mais avec un nom-
bre plus important de processeurs, la taille du BSPA explose, et son temps de

construction finit par devancer le temps de recherche.

PROGRAMMATION DE TENSEURS AVEC BSP

Beaucoup d’applications de reconnaissance de motif et apprentissage ma-
chine reposent désormais sur les réseaux de neurones, par exemple la classifica-
tion d’image et la reconnaissance d’objets dans des images ou des vidéos. Les
réseaux de neurones sont des graphes de flux de données d’arithmétique linéaire
pour des opérations de seuil sur des pixels, structurés en tableaux couches con-
nectés par des dépendances pouvant étre connectées de facon compléte ou spo-
radique. Les éléments de ces couches sont appelés neurones. L'application d"un
réseau de neurone a ses entrées est appelée inférence.

La structure des couches est définie a la main par des experts de réseaux
de neurones pour chaque tache spécifique et les coefficients qui constituent
les opérations des couches (appelés parameétres) sont appris par une phase
d’entrainement aux calculs intensifs dont l’algorithme est une optimisation a
la plus forte décroissance avec la qualité de l'inférence comme fonction objectif.
La qualité de l'inférence est définie de fagon ad-hoc en notant les résultats sur
un large ensemble de données.

Programmer un réseau de neurones se réduit a définir ses couches et leurs in-
terconnections pour l'inférence puis I’entrainement pour obtenir des parametres

de haute qualité qui sont utilisés pour cible de I'application.

xii

Le travail présenté ici est la tentative d’analyser plus loin la programmation
des réseaux de neurones comme une programmation purement fonctionnelle
et non-récursive avec un petit ensemble de primitives de tenseurs. Cela nous
amene a une meilleure compréhension du (petit) fragment d’algebre linéaire
utilisé dans la programmation de réseaux de neurones. Il construit aussi une
base presque universelle pour la construction de couches et réseaux de neurones,
le seul exemple manquant actuel étant les réseaux dit récurrents i.e. ceux ayant
des dépendances cycliques.

Nous décrivons nos primitives et un langage spécifique petit et simple ap-
pelé HTL pour leur applications a la programmation de réseaux de neurones
(acyclique): type, sémantique, analyse statique, syntaxe, exemples de program-
mation et conception pour la génération de code paralléle et entrainement au-

tomatique.

CONCLUSION ET TRAVAUX FUTURS

Toutes les routes ménent a BSP

Nous avons montré deux différents ensembles de techniques pour la génération
automatique de programme BSP.

Automates BSP

Automates BSP a partir d’expressions régulieres BSP Les expressions
régulieres BSP peuvent étre vues comme un langage déclaratif représentant
un ensemble de mots. Les automates BSP sont quant a eux des machines pour
résoudre le probléeme de décision d’appartenance d’'un mot a un ensemble
représenté par une expression réguliere BSP. Cette transformation est donc la
compilation d'un langage déclaratif a une machine testant ’appartenance d'un

mot au langage représenté.

Déterminisation d’automate BSP Quand le temps de recherche est ce qui
compte le plus (et qu’il n'y a pas de matériel spécial impliqué), les automates
non-déterministes doivent faire place aux automates déterministes. Pour cette
raison, nous traitons les automates non-déterministes comme une machine ab-
straite tandis que les automates BSP sont le code BSP concret responsable de la
recherche de mots BSP. La déterminisation peut donc aussi étre vue comme la
compilation d"une machine abstraite vers du code BSP concret.

xiil

Recherche par expression réguliére BSP La chaine d’outils de transformations
a partir d’expressions régulieres vers des expressions régulieres BSP puis des
automates BSP non-déterministes puis enfin déterministes pour la recherche en
paralléle par expression réguliére montre de meilleurs temps de recherche com-
paré aux approches existantes qui gardent I’automate fini déterministe et spécu-
lent sur 1’état local de départ de la recherche. Néanmoins, la construction du
BSPA prend en compte toutes les distributions possibles des données d’entrée,
ce qui en effet enleve le besoin de spéculer mais aussi augmente grandement la
taille de l'automate qui a son tour augmente le temps et 1’espace requis par la
déterminisation menant a un BSPA gargantuesque pour des grands nombres de
processeurs. Notre approche reste toutefois trés efficace pour de petits nombres
de processeurs qui, rappelons-le, constituent la majeure partie des ordinateurs
paralléles, en particulier ceux disponibles pour le grand public.

Cette approche est une compilation d"un programme séquentiel, I'expression

réguliere vers un programme BSP, I’automate BSP.

Calculs de Tenseurs en BSP

Nous avons introduit HTL , un langage spécifique minimal pour les calculs de
tenseurs avec seulement 6 primitives de tenseurs. Ces primitives incluent le con-
structeur init, les transformateurs map et content (qui retourne un tenseur
plus petit) et les destructeurs to_scalar, shape et reduce. Ces primitives ont
été définies pour une implémentation séquentielle et BSP pour lequel un modele
de cofit fut congu. Sa pertinence a été montrée au travers d'un exemple réel. Son
systeme de type a été introduit et inclue 1’analyse de formes qui devrait étre
statiquement déduite de facon a prendre les meilleures décisions en terme de

distribution de données, similairement a [52].

Les routes continuent en BSP
Le futur des automates BSP

Les prochaines étapes de recherche en paralléle par expression réguliere inclu-
ent d’abord l'optimisation de I'implantation des BSPA pour en réduire la taille
et ainsi diminuer davantage son temps de recherche. Par la suite, les expres-
sions régulieres étendues seront considérées. La certification de toute la chaine
d’outil serait un atout majeur pour la théorie des automates BSP. La preuve com-
mencée en annexe A est le premier pas vers cet objectif. Celui-ci demanderait

d’abord de transformer la conjecture 1 en théoreme par la complétion de tous

Xiv

les cas de la preuve. Par la suite viendrait la conservation du langage durant
la déterminisation et le déterminisme de I'automate retourné incluant 1’absence
des e-transitions et 1'unicité des états résultant par transitions locales et globales.
Concernant la parallélisation des RE en BSPRE, le langage des BSPRE devra étre
égal a la distribution du langage de la RE, pour une distribution par bloc. Cette
derniére bénéficierait aussi d'une preuve que les BSPRE produites sont mini-
males ainsi qu’une quantification précise ou une sur-approximation de la taille
de la BSPRE retournée.

Nous avons la conviction de ne pas avoir encore mesuré la portée des appli-
cations des BSPA. L’application de la reconnaissance en parallele par expression
réguliere a le mérite d’utiliser toutes nos transformations et d’étre bien connue.
Pourtant, la premiere transformation des expressions réguliéres vers expressions
régulieres BSP crée des BSPA trop larges pour passer a I’échelle et la BSPRE est
simplement une disjonction de vecteur d’expression réguliere. Elle n"utilise ni
I'étoile de Kleene, ni la concaténation (i.e. synchronisation), méme s’il est vrai
que nous nous reposons sur ce fait pour justifier de la suffisance des cas cou-
verts par la conjecture 1 dans 1'annexe A. Une application requérant l'utilisateur
de concevoir la BSPRE lui-méme devrait prévenir 1'explosion due a la premiere
transformation et faire bon usage de 'expressivité des BSPRE. Nous espérons
encore 'apparition d"une application mettant a profit toute la puissance des au-
tomates BSP.

HTL pour I'apprentissage machine

Nous avons démontré que HTL est un concept de langage productif et effectif
pour la programmation de réseaux de neurones inférence i.e. le calcul temps-réel.
Mais les programmes de réseaux de neurones sont inutiles sans entrainement
pour obtenir une inférence de haute qualité a partir d'une optimisation de ses
parameétres. A cet effet, nous définirons un ensemble d’équations de différenci-
ations pour nos primitives de tenseurs. Une telle définition permettrait le cal-
cul automatique de la dérivé d'un programme par rapport a ses parametres de
poids. Le petit nombre de primitives avec des définitions mathématiques simples

dans HTL devrait rendre ce processus a la fois siir et efficace.

Il est aussi prévu d’augmenter les cibles matérielles d’'HTL au GPUs pour
lequel de nombreuses approches sont disponibles. Nous pourrions générer di-
rectement le code CUDA, I’API C pour programmer des GPUs Nvidia ou le

XV

moins spécifique OpenCL, un standard ouvert pour la programmation de GPU
en C++. Ceci est 'approche bas niveau. L'approche haut-niveau serait soit de re-
poser sur SPOC [4], une bibliotheque OCaml visant a la fois CUDA et OpenCL,
soit d’utiliser les approches a base de modele telles que BSP avec BSPGP [25],
une bibliothéque de C consistant en un petit nombre de primitives visant CUDA
ou alors multi-BSP avec multi-ML [1], une extension de BSML pour multi-BSP
ou encore SGL [39], un langage basé sur deux primitives majeures pour les ar-
chitectures hétérogenes. Enfin, viser les récents TPUs [29] devrait constituer la
suite logique pour laquelle peu de langages sont encore disponibles.

XVi

ACKNOWLEDGEMENTS

I would like to thank first my supervisors Frédéric Loulergue and Gaétan
Hains for guiding and helping me so much throughout this journey. I will never
forget how tough it was to write the thesis in time, but I could hang on because I
knew Frédéric was working just as hard as me to improve it. My thesis topic was
born from Gaétan’s idea, it’s evolution through other projects and the following
of this thesis was also thanks to Gaétan. If this journey was on boat, then I
paddled a lot, Frédéric blew in the sails to move forward and Gaétan showed
me lighthouses to follow.

I thank the reviewers Franck Pommereau and John Mullins for the great work
they achieved in so little time. Wijnand Suijlen, thank you for being in my jury
and for everything you taught me on the cluster. I thank Jean-Michel Couvreur,
for accepting to be in my jury and helping me while Frédéric was away. I would
also like to thank Chong Li here, even though he was not in my jury, because he
is the one who brought me to this thesis in Huawei.

I thank my colleagues and friends Arvid Jakobsson, who shared my pain
(especially after our biweekly meetings) and passion for climbing, Anthony
Palmieri who managed to put me both on a game and in a bar (the former was
easier), Filip Pawlowski successfully brought me to move (out of my couch) to
his country, Pierre Leca shared with me the great title of “caveman”, Jan-Willem
Goossens fought alongside me in the summoner’s rift and Juan Carlos Bucheli
Garcia who will appreciate the lack of drug joke and also totally deserves the
long space taken by his name here, for their moral support and sharing the same
burden.

I thank my dear friends from university, the too bright (to be modest) Mattias
Roux for his humor (at my expense), the handsome Bruno Fruchard for our
heartfelt discussions in your car or during the few times you managed to extract
me from home, the great Albin Coquereau for supporting me and anyone when
so few choose this role and the kind Marie Laveau. They all aimed to do research
which straightened my winding path to the same destination. Hopefully I will

like it for a while.

Xvii

I'm grateful to my family for their support and enthusiasm despite the dis-
tance in my choice of doing this PhD. I already thanked friends from other
countries who had it worse but I already had to change language. Yes, they do
not understand chocolatine here. I thank my sister Marie for also pursuing re-
search although there is not that many other choices in musicology. I also thank
my brother Vincent for his so warm welcome “Adiou ¢***d” and always provid-
ing me the best anecdotes to tell. I thank my mother Fanny for being so funny
and looking after me and my siblings, the family wouldn’t have survived two
days without you. I thank my dad Pierre, who pushed me to studies by showing
me how I disliked working with my hands.

I especially thank Geraldine Tacuel for supporting, feeding and bearing with
the moody me during the final intense period of this PhD.

I would have liked to thank many more but I hope they will agree that their
involvement in this thesis was perhaps not paramount and, as usual, I'm late
and need to finish writing this now.

I would like to end on a quote of the greatest movie but the few English
sentences pronounced there would require too many asterisks to be readable,

therefore, “faisons comme ¢a”.

L1sT OF FIGURES

1 Schéma de la transformation de BSPREa BSPA viii
2 NBSPA comportant le langage L = {(s,a)(a,a), (s,€)(a,b), (s,€)(b,a)} x
3 Déterminisation du NBSPA defig.2 xi
4 Schéma de reconnaissance parallele xii
2.1 BSP computation example for p =4 processors. 12
22 ABSPautomaton 0 0L 16
4.1 Schema of BSPRE to BSPA algorithm 27
4.2 Detailed schema of BSPRE to BSPA algorithm 28
4.3 BSP automaton desynchronized 41
4.4 BSP automaton synchronized 41

xviii

NBSPA with language L = {(s,a)(a,a), (s,€)(a,b), (s,e){(b,a)} . .. 45

Determinization of NBSPA in Figures.1 46
Sequential matching 0. 50
Parallel matching 51
Block distribution into 3 processors. 53
Cyclic distribution into 3 processors 54
Shapesof rand ¥’ L 57
Overview of re_to_bspre algorithm 58
Building+Matching time of 10Go file with BSPA 68
Building+Matching time of 10Go file with Enumeration 69
Matching vs building time of BSPA for RE (aa +b)* 69
3-Layers Binary Neural Network Architecture 85

Xix

INTRODUCTION

1.1 A PARALLEL WORLD

Parallel computers are everywhere today from two cores smart watches to
million cores supercomputers. Processor clock frequency has been stagnating
for years and increasing the number of processors or cores has been the sole
mean to increase computing power. Programming one processor (i.e. sequential
programming) is hard. Programming several processors (i.e. parallel programming)
requires to program not only their local tasks but also their communications.
This requires more work and thus provides more opportunities for errors. Con-
sequences of programming errors range from an unnoticeable different shade of
a pixel color to a rocket explosion. It is thus not an overstatement to say that help-
ing programmers can be a matter of life and death. Parallel programming is in
general even harder than sequential programming and thus requires even more
help. For example, a well-known error in parallel programming is the deadlock,
an error happening when processors are waiting for each other forever. Several
approaches exist to help parallel programmers to avoid errors.

1.2 MAKE THE PARALLEL WORLD A BETTER PLACE

Models such as bulk-synchronous parallel model [60] (BSP) restrict the program-
mers to prevent them from committing numerous mistakes. For example, if re-
spected, it enforces all processors to synchronize at the same time thereby pre-
venting deadlocks. Restricting the programmers may nevertheless come at the
price of performances. This trade-off between safety and performances is analo-
gous to the efficiency of low-level languages (e.g. assembly or C) against safety
of the (well-made) high-level ones (e.g. OCaml).

2 Chapter 1. Introduction

Verification aims at analyzing programs to tell the programmer about errors he
made. Verification may analyze written programs statically or running programs
dynamically. This method may be added to the previous ones to verify properties
that were not ensured by the model. It may also verify the respect of the model,
for example, if all processors synchronized at the same time [27] which is a
necessary condition for BSP.

Certification proves that a program satisfies a specification [42]. Specification
of a program is the mathematical description of conditions that need to be ful-
filled by the program to be correct. This approach is the only one that may
ensure the complete lack of errors in the written program. This method requires
nonetheless a considerable amount of work even with the right tools, e.g. Cogq.
Coq [53] is a proof assistant that may be used for proofs of mathematical theo-
ries as well as a programming language from which certified programs may be

extracted.

Generation of programs (i.e. code) from a higher level language provides the
safety of the source language with performances of the target. Compilers are
usually responsible for this translation and often comes with some static veri-
tication before code generation. For example, BSML is a high level BSP library,
free of deadlocks, that may be compiled to an efficient low level library such
as MPIL. MPI normally does not prevent deadlocks, but it does when generated
from BSML. A few examples of certified compilers exists [38] which guaranty
that the compiled program preserves the source program semantic.

1.3 (GATES TO THE PARALLEL WORLD

We developed the latter approach to generate parallel BSP code from sequen-
tial programs. Having the parallel model BSP as the target of our generation
makes it easier in the same manner that models make parallel programming
easier. BSP also yields a cost model to measure the time a program would take
which is an interesting added value to our work. Certification is too cumber-
some to be treated in early stages of the design as it would slow it tremendously.
However, we always took into account future certification in our approaches.

However automatic generation of general-purpose code is a deep and hard

problem, but narrowing the application allows us to be more effective in doing

1.3. Gates to the parallel world 3

so. Thus, two specific domains were targeted with different techniques used for

each of them.

1.3.1 BSP automata for regular expression matching

BSP Automata (BSPA) and BSP regular expressions (BSPRE) were introduced by
Hains [19] in 2016. We developed this theory through three main transformations

that the theory was lacking until then.

Generation of BSP Automata from BSP regular expressions. This transforma-
tion is akin to the fundamental transformation from regular expression to a
non-deterministic finite automaton recognizing the language represented by the
former [59, 7, 6]. It may be understood as the compilation of BSPRE, a represen-
tation of BSP language, to BSPA, a machine recognizing BSP words belonging to
this language.

Determinization of BSP Automata to make them more efficient. Automata and
BSP automata are in general not deterministic which means that several transi-
tions with the same label from the same state may exist, giving birth to an am-
biguity. During matching, this ambiguity forces a choice which, if wrong, forces
in turn to a backtrack, loosing time that is precious in applications like regular
expression matching. In our case, non-deterministic BSPA are an abstract finite
state machine while their determinization into deterministic BSPA is a compila-

tion to executable parallel code.

Parallelization of regular expressions into BSP regular expressions. This trans-
formation is dependent on the input distribution to the processors. It computes
the BSPRE to take into account all possible splits of the input occurring dur-
ing distribution. Given a sequential representation, this transformation returns a
BSP representation, which is the first step needed to eventually compile to BSP

code.

Composition of these three previous transformations which starts from paral-
lelization of regular expression into BSPRE, followed by the generation of non-
deterministic BSPA which are determinized into deterministic BSPA, enables a

parallel regular expression matching scheme.

4 Chapter 1. Introduction

1.3.2 Domain specific language for tensor computation

We were also interested in neural nets, a field currently receiving a lot of fo-
cus. Neural nets are usually based on computational graphs implemented with
tensors (i.e. multidimensional arrays). Recent works such as Relay [54] replaces
computational graphs by a programming language. However, existing works
provide in our opinion too many features, making formal methods (e.g. verifi-
cation or certification) harder to apply. We designed a small (domain) specific
language (DSL) with a few primitives of which composition is sufficient for this
domain. This DSL is compiled to BSP code thereby being another example of
generated parallel BSP code from sequential program.

1.4 PUBLICATIONS

This section presents our accepted articles.

1. Thibaut Tachon, Chong Li, Gaétan Hains, and Frédéric Loulergue.
Automated generation of BSP automata. Parallel Processing Letters,
27(01):1740002, 2017. DOI 10.1142/50129626417400023.

2. Gaétan Hains, Thibaut Tachon and Youry Khmelevsky. From natural lan-
guage to graph queries. In The annual IEEE Canadian conference on Electrical
and computer engineering (CCECE), 2019. to appear.

3. Thibaut Tachon. Parallel Matching of Regular Expressions with BSP Au-
tomata. In The International Symposium on Formal Approaches to Parallel and
Distributed Systems (4PAD), 2019. to appear.

Although article 2 may also be considered as a compilation from sequential
language (natural language) to BSP program (because there exist a BSP back-end
for processing graph queries), this paper mostly present work of students and
its contribution is more pedagogical than technical. Thus, this paper was not
extended in the present document.

1.5. Organization 5

1.5 ORGANIZATION
This document is organized as follows.

After this brief Introduction in Chapter 1, Preliminaries will introduce the con-
cepts we rely on as well as notations used throughout the document in Chap-
ter 2. State of the Art follows to introduce the related work, to which we are
compared, build on or will try to include in Chapter 3. Note that because there
is no common notation or related work, Preliminaries and State of the Art do
not include our specific work on Chapter Tensor Programming with BSP which

is self-contained.

We present creation of BSP Automata in Chapter 4. An informal mathematical
proof is given that generation preserves language in Appendix A. Although we
did not have the time to complete this proof for all cases, we completed enough
cases to cover the application of BSPRE for Parallel Matching of RE. We describe
in detail Determinization of BSP Automata in Chapter 5. BSPRE for Parallel
Matching of RE is shown in Chapter 6 It includes parallelization of regular ex-
pression and the implementation of the three transformations composition that

is evaluated against a standard approach of parallel regular expression match-

ing.

Tensor Programming with BSP is introduced in Chapter 7, including its own
related work, notations and the presentation of the DSL. We conclude this docu-
ment and present future work in Chapter 8.

PRELIMINARIES

CONTENTS
2.1 NOTATIONS . . . o o e e e e e e e e e e e e e e e e e e e 7
211 Typenotationso oL 7
212 Functions L o o 8
2.2 FINITE AUTOMATA THEORY« « v v v i it 9
2.2.1 Word, alphabet and language 9
222 Regularexpressions., 9
2.2.3 Finiteautomata 0. 10
2.3 BULK-SYNCHRONOUS PARALLEL MODEL o oo oo o ... 11
23.1 Supersteps 11
23.2 Costmodel 12
2.4 BSP AUTOMATA THEORYo vttt 12
2.4.1 BSPwords and languages 12
2.4.2 BSPregular expressions 12
2.4.3 BSPautomata 0000, 14

This chapter aim at defining the concepts used throughout this thesis in order to

be as self-contained as possible. Those concept definitions rely on basic notations

introduced in section 2.1. Our contributions in Bulk-Synchronous Parallel (BSP)

Automata theory (section 2.4) builds on finite automata theory and BSP model,

respectively over-viewed in section 2.2 and section 2.3. The Chapter 7 is self

contained and do not need preliminaries.

8 Chapter 2. Preliminaries

2.1 NOTATIONS

This section presents general notations. We describe notations for type (in
subsection 2.1.1) as well as some functions frequently used (in subsection 2.1.2)

2.1.1 Type notations

o In “v : t”, the right hand side of the colon is the type of the left hand side
(for example 7 : IN).

o Type “at” is read t of a. For example IN vector set refers to set of vectors of

natural numbers.

o A function type has form “f :a — B — ... — g v
—_——— ~
inputs type output type

o A tuple type has form “(t; x ... *t,)”. In particular, a pair type is written
ple typ P p YP

”(tl * tz)”.

2.1.2 Functions

o P(X) is the powerset, set of all subsets of set X.

o fst:a X B — ais a function to get the first member of a pair.

o snd :a x B — Bis a function to get the second member of a pair.
o X*

> when X is a (BSP) regular expression, it is the Kleene closure.
> when X is a set, is the set of all sequences of elements of set X.

> when X is a function, it is the application of this function to a sequence
of elements (e.g. snd” (ay,1)(az,2) ... (ap,n) =1...n)

Lists will be also used and are defined as in the OCaml language.

Definition 1 « list : X re list

l:=a:1" Left extend operator : & — alist — alist

|] Empty list : a list

2.2. Finite automata theory 9

Lists are enumerated between square brackets. We also define concatenation of

lists.
Definition 2 @: « list — « list — w« list : List concatenation.

(axh)@l, = a::(lh@ly)
] @, =1

We also rely on sets in their mathematical definition and notation.

Vectors are also used. We refer to an element of vector v at position i with
notation v'. The content of a vector v is set to a at position i with v’ - a. Note
that setting the content of a vector returns that vector.

2.2 FINITE AUTOMATA THEORY

2.2.1 Word, alphabet and language

Let ¥ be a non-empty finite set of symbols, called the alphabet. A sequence of
symbols is named a word, a word is an element of ~*. A language L is a subset
of X*, it is a set of words, or in other words an element of P (X*).

2.2.2 Regular expressions

L(E) is the language represented by the regular expression E. The empty word
is denoted by €. The empty language is denoted by L(Q).

Definition 3 RE : X re
Y re is the type of regular expression parametrized with %, the set of symbols.
A regular expression E is defined as following.

E:=F+G|F-G|F'|ac%|e|®

Definition 4 Ly : Zre — P(X¥)
The language of a regular expression on X is recursively defined as usual:

o @ is a regular expression representing the empty language : {}.

o € represents the language which only contains the empty word : {€}.

10 Chapter 2. Preliminaries

(0]

Va € ¥, a represents the language {a}.

O

F+G represents the language L(F) U L(G).

o

F - G (or just FG) represents the language L(F) - L(G) (def. L;-Ly).
o F* represents the language QL(Fi) (def. FY).

Definition 5 L,-1, : P(X*) — P(X*) — P(X¥)
Operator L; - L, on languages is defined as usual :

Li-Ly, = {wle ’ w1 € Ly, wyp € L2}

Remark 5.1 (Ly-Ly). {e}-L=L-{e} =L Q-L=L-@=0
e€(L1-Ly) < (e€Li)N(e€Ly)

Definition 6 F' : Zre — IN — Z7e

Fi_ O =€
- Fi+1:Fi~P

2.2.3 Finite automata
a) Non-deterministic Finite Automaton

A non-deterministic finite automaton (NFA) A is is formally defined as

A= (QX%,51,F).

Where Q is the set of all states, I the set of initial states and F the set of final
states. X is the set of symbols also called alphabet. § : Q — (XU {e}) — P(Q)
is the transition function, i.e. a function that given a state source and a label
(symbol or €) returns the set of states destination. In some formalisms, I is not a
set of states, but a single one. However, having a set of states or a single one with
e-transitions to other states makes no difference for the language represented by
the automaton.

An NFA A recognizes (i.e. match) a word ug...u,_1 if, from an initial state,
successively taking transition labeled by the successive symbols of the word

leads to a final state. More formally,

2.3. Bulk-synchronous parallel model 11

ug...up—1 € L(A) <= Jqe€1.6(...5(0(q,up),u1),...uy_1) €F
< Jgel.o*(qup...uy,—1) €F

b) Deterministic Finite Automaton

A deterministic finite automaton (DFA) A is is formally defined as

A=(Q,%4,q0F).
Where, like NFA, Q is the set of all states, X is the alphabet and F is the set

of final states. Unlike NFA, gq is the only initial state as there must not be any
ambiguity where the matching starts, because it’s deterministic. Also, § : Q —
o — Q is deterministic as it has no € transition and there is only one transition
from a given state with a given label (leading to only one destination state).

A word uyg ... uy, belongs to the language represented by the DFA A when

Ug...Uy_1 € L(A) <~ (5(...5(5(qo,u0),u1),...un,1) eF
< 5(...5(5((]0,1/[0),1/11),...1/[”_1) €F
<~ (5*(q0,u0...un_1) eF

2.3 BULK-SYNCHRONOUS PARALLEL MODEL

BSP stands for Bulk Synchronous Parallel. It is a programming model which
structure the parallel program into a sequence of steps (described in subsec-
tion 2.3.1). Programmers are used to write sequential programs and having a
program divided in a sequence makes it much easier to understand. BSP also
comes with a cost model (subsection 2.3.2) thereby enabling comparison and

assessment of BSP algorithms.

2.3.1 Supersteps

A BSP machine is a set of homogeneous processor-memory pairs interconnected
by a network and having a global synchronization mechanism. A program obey-
ing the BSP model is structured as a sequence of supersteps (represented in Fig-
ure 2.1). Each of them starts with asynchronous computations, followed by ex-
change of data, and ends with a synchronization barrier after which the ex-

changed data is available in each local memory.

12 Chapter 2. Preliminaries

(M)
Async computations ~Communications Sync Next Superstep

Figure 2.1 — BSP computation example for p = 4 processors

2.3.2 Cost model

Performance predictability is a major feature of the BSP model, in other words
the execution time taken by a BSP program or its cost. In order to compute
this cost, parameters of the BSP machine must be taken into account, noted p
the number of processors, g the throughput of communications (amount of data
communicated per time unit) and / the latency, being the time needed to perform
a synchronization.

Note S the number of supersteps in a BSP program, the execution time of
a BSP program is the sum of the time taken by all S supersteps. The time of a
superstep is the sum of the time taken by the local computation, the communica-
tion and the synchronization. Note w/, the local computation time of a processor
i(0<i<p-—1)inasupersteps (0 <s <S—1). The local computation time of
a superstep s is thus: maxfz_ol(wé). Note ki and 7. the data sent (resp. received)
by a processor i in a superstep s. Therefore, communication time of a superstep
sisg- maxf;()l (max(hi, ri)).

To sum up, time taken by a superstep s is

max(wf) + g - hax(max(Hl, rt)) + I

Hence, the total execution time of a BSP program is

S—-1
. (hax(wd) + g - ax(max(h,) +1),

5s=0 i=0

or

5—-1
2 rflélx(wg) +g- 2 rﬁalx(max(hé,ré)) + SI.

s=0 =0 s=0 =0

2.4. BSP automata theory 13

2.4 BSP AUTOMATA THEORY

A major part of the thesis builds on the BSPA theory [19], which must be
presented. As main elements, BSP words, BSP regular expressions and BSP au-

tomata are defined in this section.

2.4.1 BSP words and languages

To model asynchronous computation of one superstep, we use a vector of size
p (p is the number of processors) whose components are words. Words may be
understood as sequential traces of one processor in one superstep where symbols

are elementary operations.

Definition 7 : Elements of (X£*)? are called word vectors. A BSP word over X is
a sequence of word vectors, i.e., a sequence ((£*)P)*. A BSP language over X is

a set of BSP words over X.

A word vector models computation within one superstep and a sequence of
supersteps is modeled by a BSP word. A BSP language models a set of different
traces of a BSP program.

2.4.2 BSP regular expressions

In this section we present how to adapt regular expressions to BSP languages.
The set of positions of a p-sized vector is denote by [p] = {0...p — 1}. Two
different notations are presented: enumerated BSP regular expressions and in-
tensional BSPRE

a) Enumerated BSPRE

An enumerated BSPRE (in this subsection, all BSPRE will be enumerated) is an

expression R from the following grammar:
Ru=@|e| ...,/ Y |R-R|R+R | R

where r’€[P] is a scalar regular expression, as defined in subsection 2.2.2.
For scalar regular expressions and BSP regular expressions, the product is

often written r v’ (resp. R R’) instead of 7 - 7’ (resp. R - R’). R is parametrized by

14 Chapter 2. Preliminaries

R L(R)
{
€ {e}

<1’0,. . .,Vp_1> L(TO) X X L(T’p_l)

S

R-R L(R)-L(R")
R+R L(R)UL(R")
R* QU@)

Table 2.1 — Enumerated BSPRE language

the set of local symbols and the number of processors p. When needed, we indi-
cate this information by a type: (X, p) bspre. Table 2.1 defines the BSP language
generated by a BSP regular expression. L is a function with signature L : (X, p)
bspre— P (((X*)F)*).

These BSP expressions yield two levels: the BSP level and the scalar level. The
former describes the structure of the main parallel program while the latter de-
scribes the local program structure. For example, (a,b)* models a BSP program
for 2 processors where the first processor does a, the second processor does b
and both loop after synchronization.

b) Intensional BSPRE

The former notation is not a scalable point of view on parallel programming.
To address this issue, intensional notations are introduced where local regular
expressions are defined for a set of locations independent from p.

This set of locations will be the language represented by a regular expression.
Assume that locations i € [p] are written in binary notation (0,1,10,11, ...). We

define a binary regular expression (BRE) by the following grammar :

b:=Q|0|1|b-b|b+b|b"

Note that the empty word has no signification in terms of location, so it does
not appear in BRE. As an example, b; = (0 + 1)*1 represents the set of odd-rank
locations.

We redefine the BSPRE with intensional notation :

R:=(V)|@|e|R;R|R+R|R*
Vi=r@b local RE at location encoded by b

| VIV superposition by pointwise-disjunction of RE

2.4. BSP automata theory 15

where r € RE and b € BRE.

For example, the intensional BSPRE (a@0]| b@(0+1)0llc@(0+1)*1)
is equivalent, when p =4, to (a@0 || b@0+10 Jc@1+11)
which corresponds to enumerated BSPRE (a + b, ¢, 1bo c)

0

We overload the type bspre for intensional BSPRE with X bspre (not p-
dependent) and the function L with type : (X bspre, p) — P(((X*)F)*). Table 2.2
defines the BSP language generated by an intensional BSP regular expression.

R L(R,p)

@ {}

€ {e}

i=p—1 | L(r) ifie L(b)
<1’@b> | Hi:g { {@} else
(n@by || ... [l @by | TIh " ULL(rj) | i € L(b),1 <j <k}

Ri; Ry L(Ry) - L(R2)
R+ R, L(R1) UL(Ry)

R* Q)U(R)

Table 2.2 — Intensional BSPRE language

2.4.3 BSP automata

Definition 8 : A BSPA is a tuple

A = ({QYiep) A0 iy {00 Ve, {F Yier), B)

such that for every i, (Qi, 2, (5i,q6, Fi) is a finite deterministic automaton’, and
A: Q — Qis called the synchronization function where Q= (Q% x ... x Q(P=1))
is the set of global states. In other words a BSPA is a vector of sequential au-
tomata A’ over the same alphabet ¥, together with a synchronization function

(A) that maps state-vectors to state-vectors.

1’ is the finite set of states, § the transition function, qf) € Q' the initial state, and F! C Q'
the non-empty set of accepting states.

16

Chapter 2. Preliminaries

Figure 2.2 — A BSP automaton

To complete the explanation of BSP automata, we give an example automa-

ton by its graphical representation in Figure 2.2. In this example, p = 2. The

local automaton (QO, %, §O,q8,F0) is represented in red, the local automaton

(Ql,Z, (51,q(1), Fl) in blue. Initial states are hexagons, final states are double cir-
cles. The function A = {(2,2') — (3,3'), (6,4’) — (7,5')} models synchroniza-
tion happening at the end of a word vector in a BSP word. As an example, the
above BSPA recognize the BSP word (ab, ba)(cd,a). This may be checked with
the BSPRE matching algorithm described below.

BSPRE Matching of a BSP word. The algorithm described here recognize a
sequence of word vectors among those which belong to the language described
by a BSPRE.

Note 6* : Q — X* — Q the extended transition function such that

0*(q,{uo...up_1}) =0(...(6(q,up),...), Up—1)

1.

If the sequence of word vectors is empty, the vector state remains the vector

of local initial states until step 5; otherwise continue.

(w®,...,wP~1) is the first word vector of the sequence. Local automaton
i(€ [p]) applies 6* (g, w') to reach some state g'.

. If (¢°,...,gP~1) is not argument of the synchronization function A, the BSP

word is rejected.

The synchronization function A maps: (g%, ...qP~1) — (g/°,...q'P~1)

. If there are no more word vectors, and Vi. g" € F', the BSP word is accepted.

If there are no more word vectors, and 3i. ¢ ¢ F, the BSP word is rejected.

If there are more word vectors, control returns to step 2 but with local
automaton i in state ¢, for every location i.

STATE OF THE ART

CONTENTS
3.1 BULK SYNCHRONOUS PARALLEL MODEL oo v v v .. 17
3.1.1 BSP programming L 17
3.1.2 BSP programs from specifications 18
3.1.3 BSP computation semantics 0L 19
3.2 EFFICIENT REGULAR EXPRESSION MATCHING 19
3.2.1 Sequential optimization 0 0L 19
3.2.2 Parallel optimizations 22
3.2.3 Dedicated hardware 24

We focus on BSP programs generation thus we study languages for writing BSP
programs directly in section 3.1.1 or deriving them from specification in sec-
tion 3.1.2. As BSP Automata may also be considered as a BSP computation se-
mantic, we also study BSP semantics in section 3.1.3.

The main application we developed being parallel regular expression match-
ing we also study the related work. We start by describing automata optimiza-
tions in a sequential context (section 3.2.1) to have a better grasp of the domain
and understand better optimizations in parallel context studied in section 3.2.2.
We also study dedicated hardware for parallel regular expression matching as it

may be of interest for future work.

17

18 Chapter 3. State of the Art

3.1 BULK SYNCHRONOUS PARALLEL MODEL

3.1.1 BSP programming

We present in this section different libraries for writing BSP programs in different
languages, BSPlib for C, BSML for OCaml and JBSP for Java.

Hill, McColl et al. [23] presented in 1998 BSPlib, a C-library for program-
ming BSP programs consisting of only* 20 basic operations. Programming of all
processors is coded in a single program, i.e. following the Single Program Multi-
ple Data (SPMD) programming model. It offers two communications mode. The
direct remote memory access allow a process to manipulate certain registered
areas of a remote memory which have been made available by the correspond-
ing process. The bulk-synchronous message passing is more convenient when
the volume of data is not static but data dependent as it relies on buffers.

Gu, Lee and Cai [18] present JBSP, a BSP programming library for Java. Like
BSPlib, it relies on SPMD programming and also propose message passing and
direct remote memory access as communication modes. Parallelism is imple-
mented with Java threads and each JBSP host uses two daemons, one for tasks,
one for communications. The Java virtual machine (JVM) makes the program

executable on any platform that supports JVM without recompiling.

Loulergue, Gava and Billiet [43] present BSML, an OCaml library for writing
functional BSP programs consisting of only 4 primitives (i.e. basic operations
coded with lower level libraries). It prevents dead-locks and indeterminism while
providing an estimation of its execution time. BSML does not rely on SPMD
programming but on parallel vectors, an explicit distributed data structure with
a component per processor. The primitives are mkpar to create a parallel vector,
apply to apply a vector of function to another, put to communicate vector
values and at (name today is proj) to make a vector component available for

all. It also provides a function to get the static number of processor, bsp_p.

3.1.2 BSP programs from specifications

Chen and Sanders [10] proposed Logic of global synchrony (LoGs), a specification
formalism for the specification of BSP programs. They also describe a top-down

‘compared to MPI

3.1. Bulk synchronous parallel model 19

method for designing BSP programs from Logs. Their top-down method starts
from an abstract formal specification which is refined into a more concrete form

until an actual BSP program.

Niculescu [52] presents a method to refine formally BSP programs. This
method takes different data distribution into account which lead to different
algorithms. It also allows to compute BSP cost model in early stages of the re-
finement in order to choose the best option according to characteristics of each

concrete systems.

Loulergue, Bousdira and Tesson [42] rely on SyDPaCC to generate correct
parallel programs from a formal specification. SyDPaCC is a set of libraries of
the proof assistant Coq. The specification is written in Coq, from which the
sequential program is derived and then automatically refined into a parallel
program thanks to algorithmic skeletons. Afterwards, the parallel program is
extracted to OCaml code with BSML and C code with MPIL.

3.1.3 BSP computation semantics

Loulergue, Hains and Foisy [44] introduce BSA, an extension of A-calculus for
functional languages expressing BSP algorithms. BSA was presented as basis for
programming BSP algorithms as pure functional programs (which was success-
ful because BSML is largely inspired from it). BSA is also an equational theory
and thus offers a possible basis for BSP programs equivalence proofs.

Merlin and Hains [49] formalize BSP semantics with CCS. The Calculus of
Communicating Systems (CCS) is a process algebra used for the analysis of
safety, liveness and security in protocols or distributed programs. This study
lead to a complex theory named bisimulation or trace equivalence of BSP-like
computations.

Fortin and Gava [15] present BSP-Why, a tool for verifying BSP programs. It
relies on the verification condition generator Why which takes an annotated pro-
gram as input and produce verification conditions as output to ensure correct-
ness of the properties given in the annotations. BSP-Why is based on a sequential
simulation of the BSP programs which allows to generate pure sequential code
for Why.

20 Chapter 3. State of the Art

3.2 EFFICIENT REGULAR EXPRESSION MATCHING

Our research for efficient parallelization of regular expression matching
(REM) brought us to study optimization of automata processing. We studied
different category of optimization of sequential automata and provide the spe-
cific study of a few iconic paper for each of them. Parallel REM is subsequently
studied from the most naive to state of the art DFA run as well as new parallel
automata model. REM is such an important challenge that compatibility with
costly dedicated hardware is extensively studied of which major principles are

reported here.

3.2.1 Sequential optimization

Optimization of sequential automata often rely on compressing them. Smaller
automata means more efficient memory use with less cache misses which lead
to a decreasing matching time. Major compressing techniques are reported in

this section.

a) State reduction

Becchi and Crowly [2] introduce Hybrid Finite Automata (HFA). DFA are
known for being efficient but space-consuming whereas NFA are small but time-
consuming. HFA aim at retaining the best of both. In the context of extended
regular expressions, dot-star (i.e. Kleene closure of the disjunction of the whole
alphabet) and fixed-length repetitions of expressions are the main cause of state
explosion during DFA computation. DFA computation from NFA is classically
made with subset construction. Becchi and Crowly are able identify during sub-
set construction when state explosion will happen and stop it by keeping a non-
deterministic piece of the produced HFA. Their experiments shows an average
memory storage requirement comparable to that of a NFA and an average mem-

ory bandwidth requirement similar to that of a DFA.

Kumar et al. [34] propose three different optimization of state number orthog-

onal to each other hence simultaneously implementable.

1. Usually, only a few states of the automata are very often explored. Kumar
et al. computes the few often explored states into a fast DFA and the others
into a NFA.

3.2. Efficient regular expression matching 21

2. When a DFA construction lead to a state explosion, some parts are of-
ten repeated. This may be avoided by using a history, hence invention of
History-based Finite Automata (H-FA).

3. k-repetition of an expression r in extended RE lead to a k-multiplication
of the number of states representing r. Such a multiplication could be eas-
ily avoided with a counter thereby creating History based counting Finite
Automata (H-cFA).

Smith, Estan and Jha [57] introduce eXtanded Finite Automata (XFA). Ex-
tended regular expressions provides features such as wildcard or fixed-length
repetitions that makes generated automata size no longer a function of the regu-
lar expression size. XFA extends FA with variables, modified through transitions
and checked in final states to confirm matching validity. For example, a XFA
matching a hundred repetition of character ‘a” would have one state (being both
inital and final), a transition increasing a counter and the state checking if the
value of the counter is equal to a hundred before validating the matching. For

the same purpose, a FA would have a hundred and one state.

b) Transition compressing

Kumar et al. [35] present Delayed Deterministic Finite Automata (D?FA), an
efficient transition compression in the context of deep packet inspection. D°FA
are defined as DFA extended with a new kind of transition, unlabeled, referred
as default transition. During matching, if no transitions are labeled with the cur-
rent input character, the default transition is followed but the input character
is not consumed, it is retained or put in another way, delayed. After the default
transition is followed, output transitions of the new current state are matched
with the delayed input character. Their experiments shows a data saving of 95%
although transformation from DFA to D?FA is NP-hard.

c¢) Alphabet compression

Kong, Smith and Estan [30] Introduce the use of several Alphabet Transition
Tables (ACTs) to reduce the size of transitions table attached to individual states.
An ACT partition alphabet in equivalence class with each class having transi-
tions with identical behavior for a group of states S C Q. Previously, only one
ACT was computed (S = Q). Kong et al. had the idea of partitioning Q with each
partition having an ACT associated thereby improving the compression. Having

22 Chapter 3. State of the Art

a lot of ACT saves memory by a factor between 4 and 70 but slow the matching
by 35% to 85%. This method was also experimented together with (D?FA) [35]
since their approach is orthogonal.

d) Regular expressions rewrites

Yu et al. [61] describe two classes of DFA suffering from state explosion dur-
ing their generation from regular expression. These two classes are the quadratic
and the exponential state explosion. Regular expressions considered in this pa-
per are extended regular expression, including wildcard and quantified repeti-
tions which are in particular responsible for state explosion. A rewrite rule is
presented for each class and according to their experiment, both yield a 99%

state number reduction.

e) Matching time reduction

Kumar et al. [33] improve Delayed DFA (D?FA) previously discussed in sec-
tion b) with Content addressing (CD?FA). CD?FA replace state identifiers with
content labels that include information about the output state of the default tran-
sition. Contents labels allow to skip the travel time used by a default transition
exploration thereby achieving the same throughput as the original DFA for much
less space used thanks D?FA implementation. Besides, the more compact a data
structure is, the less cache miss happen. Their experiments shows that with a
1KB cache, CD?FA achieve twice the throughput of an uncompressed DFA while

only requiring a tenth of its space.

3.2.2 Parallel optimizations

In most research papers, parallel regular expression matching keep the DFA in
its sequential form but operate in parallel over it. A few transform the automata
in a parallel form suitable for parallel matching.

a) Automata parallel run

Ladner and Fischer [36] used transducers to compute parallel prefix. Trans-
ducers are automata which produce output along the input consumption. This

article is known as the first description of parallel run of transducers.

3.2. Efficient regular expression matching 23

Holub and Stekr [24] detailed implementations of parallel DFA run for dis-
tributed memory in cluster of workstation and (symmetric) shared memory
(multiprocessors). In this method, the automata is not modified and the input
is distributed in blocs for each process. The difficulty for each process is thus
to know at which state the previous process automata will end it’s matching
to know where to start. Only the first process knows for sure which state is its
initial one. If each process wait for the previous one to end it’s computation then
it will be as slow as (or slower than) a sequential matching. Holub and Stekr
method involves a matching from all states (as if all states were initial states)
for each processes. Assume states are identified with contiguous natural inte-
gers starting by 0. At the end of the matching, each process will have a vector of
size the number of states with, at position i, the state at which the computation
would end if started at state i. A parallel reduction of that vector is all that is
needed to join the results to know whether the last state, after matching, is final.

This method will be later referred as enumeration method because it enumer-
ates results for all possible initial states or speculative simulation as computations
for each states as possibly initial may be called simulation. This method was
reused with different techniques.

Holub and Stekr [24] also proposed their own improvement for a category
of automata they named synchronizing automata. An automaton is synchronizing
if the matching of any word of at least a certain length k from any state g will
always result in the same state q’. With this property, reading k characters more
before each processes actual input part allow them to synchronize the DFA into
correct initial state before starting their own matching. This prevent from having

to try all states as initial, only 4’ is known as the good one.

Memeti and Pllana [48] created a tool named PaREM (standing for Parallel
Regular Expression Matching). This tool is based on the parallel DFA run method
(as [24]) but presents a novel improvement to greatly reduce the number of pos-
sible local initial states. The input is also distributed in block and each processor
looks at 1 more character before its own input chunk, noted wy_1. Note S the
states having an outgoing edge labeled with wy_1. Note L the states having an
incoming edge labeled with wy (the following character of wy_1). Possible local

initial states are thus I = S N L, which is a great improvement compared to Q.

Fu, Liu and Li [16] implemented their own tool named ParaRegex for deep

inspection in network security systems. Their approach is also an improvement

24 Chapter 3. State of the Art

of the enumeration method. They start from postulate that during enumeration,
after a couple of character read and regardless of the input state, the distinct
active states (current state during matching) are greatly fewer than the initial
states. They claim that the average number of active state after one character
read is less than one percent of the total state number. Thus, one computation per
active states and not for all possible initial states (which is Q for enumeration)
would be much faster, provided that each active states remembers all initial states
leading to itself. Bit vectors are used to code the original initial state of each active
states. Two optimizations are also presented, smart split and quick start. Smart
split allow each processors to look into a reasonably few number of characters
before their own input block to select the one which will decrease the number
of active states the most. Quick start uses a different data structure for the first
characters read to relieve the overhead of having Q bit vector of size Q, of which
most will merge very fast.

Luchaup et al. [45] present speculative parallel regular expression matching.
Rather than considering all states as potential initial states as the enumeration
method, they bet on the most probable local initial state. This method seems
to have two major drawbacks : (1) speculating has only one in the number of
state chance to succeed and (2) if the bet is not successful, the matching has to
backtrack all over again and at best the speed would be as fast as a sequential
matching. However, they have a postulate similar to [16] : only a few states
are hot (i.e. highly often used during matching) so the bet has a much higher
chance to succeed rather than the rate said in (1). Moreover, in case speculation
is not successful, Luchaup et al. maintain a history of states explorer so that after
backtrack, if the sate visited is the same as the state in the history (at the same
step), then the matching can stop and the state reached will be the final state
reached in the history. History helps to greatly mitigate (2).

Najamn Younis and Rasool [51] developed speculative parallel regular expres-
sion matching with other techniques. Multibyte matching is used to increase
matching throughput as it was done in another work of Luchaud et al. [46]. Na-
jamn et al. use k-stride DFA for multibyte matching in which transition are not
labeled with symbols anymore but with words of length k. Although this tech-
nique increases throughput, the memory used explodes because the number of
transitions is raised at power k. To mitigate this explosion, transition size is re-
duced with alphabet compression table (ACT). Transitions of k-stride DFA often

3.2. Efficient regular expression matching 25

follows a trend: transitions with the same label w often leads to the same state
g while others labeled w’ also lead to g. These trends allow to group transitions
according to their label thereby leading to an efficient compression.

b) Parallel automata

Sin’ya, Matsuzaki and Sassa [56] introduce Simultaneous finite automata (SFA).
SFA are computed from DFA and retain all simulations of enumeration method
in its states which are mapping of the DFA states. Compared to enumeration
method, parallel matching with SFA only needs to compute one transition per
input character read and after input reading, reduction is just as efficient. The
drawbacks lie in the much bigger size of the SFA compared to the original DFA.

3.2.3 Dedicated hardware

Regular expression matching (REM) is such an important challenge that compat-
ibility with costly dedicated hardware is extensively studied. Major principles
behind the use of Field-Programmable Gate Array for parallel REM are reported
here. We also describe how the recent Ternary Content Addressable Memory
hardware is relevant for REM.

a) FPGA

Sidhu and Prasanna [55] demonstrate how Field-Programmable Gate Array
(FPGA) can significantly improve performance of regular expression matching.
In particular, it is shown that FPGA requires an equal time for DFA and NFA
matching. Indeed, NFA are implemented in logical gates, thus transitions with
the same label (/) are set in parallel thereby achieving a simultaneously explor-
ing of all the /-labeled transitions. Sidhu and Prasanna also present their own
algorithm of NFA generation from regular expression run in hardware. Their
algorithm input is a regular expression in postfix form (operators written after
their operands) and a stack based data structure allow them to construct the

NFA in time linear with the regular expression size.

Moscola et al. [50] takes the opposite direction of Sidhu and Prasanna [55] by
matching with DFA instead of NFA whereas their implementation also rely on
FPGA. Also, contrary to [55] who targeted an efficient matching of one regular
expression, the context of deep packet inspection of [50] requires the matching
of several regular expression. Moscola et al. do not care about the time or space

26 Chapter 3. State of the Art

required for constructing the automata, only the space occupied by the final au-
tomata is meaningful. Their experiments show that minimized DFA are most of
the time smaller than NFA quickly computed from the same regular expression.
Thus, DFAs computed from several regular expression are run in parallel thanks

to FPGA properties.

Brodie, Taylo and Cytron [5] present a scalable architecture for high-
throughput regular expression matching suitable for both FPGA and ASIC.
Their approach, apparently similar to [50], targets a set of regular expression
and rely on minimized DFA. However, their real improvement for high through-
put rely on multibyte matching i.e. automata transitions are not labeled with a
symbol but a word, theoretically multiplying throughput by the word length.
Multibyte matching is know for exploding the transition number of the au-
tomata, hence the need to compress them. Compression is achieved here by
grouping symbols with similar behavior in equivalence class in a way similar to

[51].

b) TCAM

Meiners et al. [47] demonstrate how Ternary Content Addressable Memory
(TCAM) is a valuable asset in regular expression matching for deep packet in-
spection. TCAM are ternary, a TCAM bit value may be ‘0’,’1” or ¥/, "*’ standing
for (matching) either o or 1. This third value helps in encoding several transi-
tions within one entry (for example, entry ‘0* matches ‘00" and ‘o1’) thereby
compressing greatly the automata by decreasing the number of transition entry.
As seen previously in [51] and [5], compression of transition is very useful for

multibyte matching which is exactly what is done by Meiners et al.

FroMm BSP REGULAR EXPRESSION TO
BSP AUTOMATA

CONTENTS
4.1 DESYNCHRONIZATIONt vvv ettt ettt 28
4.2 FROM REGULAR EXPRESSION TO FINITE AUTOMATA 31
4.3 SYNCHRONIZATION . . .« . vtit ittt e e e 39
4.4 ALGORITHM EXAMPLE o vttt it e 40

In this chapter we introduce our algorithm to generate the BSPA that accepts
the same language as a given enumerated BSPRE. This transformation is fun-
damental for the BSP Automata theory as it allows to construct a BSPA whose
language is known. It is to BSPA theory what is Thompson’s [59] or Glushkov’s
[8] algorithm to finite automata theory. This transformation is also the first step

in our parallel regular expression matching scheme detailed in Chapter 6.

(X, p) bspre (X, p) bspa
Desynchronization Synchronization
(BruggemannKlein)?
((Z U y) re)p —G(Z U y) nfﬂ)@

Figure 4.1 — Schema of BSPRE to BSPA algorithm

BSPA are defined for a fixed p which allows intentional BSPRE to be trivially
transformed into their equivalent enumerated form. So if the algorithm works
for the enumerated form, it will work for the intentional one. Therefore, for this
algorithm and the whole chapter, BSPRE will be enumerated. This algorithm is

27

28 Chapter 4. From BSP Regular Expression to BSP Automata

divided in three parts represented in Figure 4.1, each of them explained respec-
tively in section 4.1, 4.2 and 4.3. This chapter is closed with an example of BSPA
generation from a simple BSPRE in section 4.4.

For reference, we give a detailed structure of the whole algorithm with a

zoom of the abstract schema Figure 4.1 in Figure 4.2.

s 2

(X, p) bspre (%, p) bspa

annot Iﬁ
\ 4 ync
(%, p) bspre® P 5

}Dsn (snf)’ (§lushkov)” (g,e) |~ (Vgst)71
[((ZU&” re [(2*xZ)UuS)re) G’ (Zu.y) nfa)
(posex)” (glu_autom)"

Figure 4.2 — Detailed schema of BSPRE to BSPA algorithm

Functions of Figure 4.2 are over-viewed below.
annot : Annotates each occurrence of vector constructor (...) with a

unique identifier 31

Dsn : Transforms a BSPRE into a RE vector which preserves BSPRE
structure and vector annotation ool 31

snf : Normal form of re that makes glushkov faster 37

posex : Localizes each symbol of a re so that they are distinct from each
Other ... 33

glushkov : Computes position of symbols relatively to each other in words
of thelanguage i 34

glu_autom : Computes an nfa with one state per symbol and transitions de-
duced from glushkov result 36

Vsre/dst - Computes vector source (resp. destination) of A, the global syn-
chronization function of the bspa encoded by the given vector of

nfa. Used for each vector annotation 39

Sync : Computes the bspa from the nfa vector and A from the vg, /s

result. ... 39
Types of functions appearing in Figure 4.2 are briefly explained in Table 4.1

29

.re

Regular expression with alphabet %

X nfa

Non-deterministic finite automaton with transitions labeled by
symbols in X U {e}.

X dfa

Deterministic finite automaton with transitions labeled by
symbols in 2.

(%, p) bspre

BSPRE with alphabet X and p-sized vectors of regular expres-
sion.

(X, p) bspa

BSPA (not deterministic in general) with alphabet ¥ and with
p-sized vectors of automata.

(%, p) bspre®

BSPRE whose occurrences of vector constructors (...) are an-
notated by unique identifiers.

Set of annotated semicolons {;; | t+ € IN} such that ;; repre-
sents a barrier separator corresponding to (the end of) anno-
tated vector constructor (...)¢. t is a unique identifier.

The set of bit values {0,1}.

P=(2"xX)

Type of localized symbols where the sequence of 2 represents
the syntactic position (a (left,right)*-path from the root) of the
given symbol in a certain regular expression. An empty se-
quence denotes the syntactic root, a o denotes a step to the left
(or unique) subterm and a 1 a step to the right subterm.

Output type of glushkov function. This is a quadruple whose
members have the name and type : (first : P(2*x ¥) , last :

P(2*x), null : {{e}, @}, follow : (2*x £) — P(2*x X))

Q

Set of states in the automata. Here, a state will correspond to a
localized symbol (Q = IP).

Table 4.1 — Function types used in the transformation from BSPRE to BSPA

30 Chapter 4. From BSP Regular Expression to BSP Automata

4.1 DESYNCHRONIZATION

The first step of this algorithm is named Desynchronization because, given
a BSPRE where the end of each vector models a synchronization, this trans-
formation will combine all vectors to output only one at the end. To keep the
synchronization information, a semicolon is written at the end of each vector.

From here to the end of this section, we will differentiate between operators
(with arity o, 1, or 2) of BSPRE and scalar regular expressions by writing “BSP”
in subscript next to the former.

One important point during the desynchronization, is that we need to know
to which vector the synchronization was associated (represented by a semicolon).
Therefore we assume that each vector is annotated by a unique identifier: a
natural number indicating the position of a vector, given to vectors by read-
ing the BSPRE from left to right. For example, ({a,b) + (c,d)){e, f) is annotated
as ({(a,b)o + {c,d)1){e f)2.

In the following, t denotes such a position, and S the set of annotations.
(X, p) bspre is the set of annotated BSP regular expressions for alphabet £ and p
processors. We denote the alphabet { | tE S} by .7 .

The recursively defined function Dsn (abbreviate desynchronization) trans-

forms a BSPRE into a regular expression for a given position.

Definition 9 number : (¥, p) bspre — N — ((Z, p) bspre® , N)
Gives a unique identifier to each vector and attaches the next least available

i.e. “fresh” integer.

let (F,ty) = number(F,t)
number(F - G,t) = ¢ and (Gy,tp) = number(G,t;)
in (Fy -Gy,)

let (Fy,t1) = number(F,t)
number(F + G,t) = { and (G, tp) = number(G,t;)
in (F; + Gy, 1)

Ve

number(F*, t

et (Fy, t1) = number(F,t) in (F,t;)
((ro, coTpo1)t 1)
(/1)
(@,1)

number((ro, ..., rp—1),t

)
)
number (€, t)
number (D, t)

4.1. Desynchronization 31

Definition 10 annot : (X, p) bspre — (%, p) bspre®

Call number with the first identifier and remove the counter of the result
annot(R) = fst(number(R,0))

Definition 11 dsn : [p] — (X, p) bspre® — (LU .7 re
Transforms a BSPRE to a RE. When a vector is encountered, a projection is
made. In this function, a distinction is made between RE operators and BSPRE

ones (BSP in subscript for the latter).

dsn' (F -, G) = dsn'(F) - dsn'(G)
dsn' (F +,,, G) = dsn'(F) 4 dsn'(G)
dsn' (F*ssp) = dsn’(F)*
dsni((ro, ,rp_1>t) =71
dsni(eBsp) =€
dsn' (Dy,) = @

The semicolon keeps synchronization existence while ¢ differentiates between
them. The next function is the main one that calls the previous one for each

position of a p size vector. Dsn and dsn abbreviate desynchronization.

Definition 12 Dsn : (X, p) bspre® — (2 U.%) re)?
Creates a vector whose content results from calls to the previous function for

each position with the position as parameter.
Dsn(R) = (dsn®(R),...,dsn""1(R))
Definition 13 Dsync : (¥, p) bspre — (2 U.%) re)?
Dsync = Dsn o annot

Eventually, we get a vector of regular expressions whose alphabet is enlarged

with annotated semicolon, ¥4, = X U .7.

32 Chapter 4. From BSP Regular Expression to BSP Automata

4.2 FROM REGULAR EXPRESSION TO FINITE AUTOMATA

To apply the second step, an algorithm was needed that, given a regular ex-
pression, gives an automaton that recognizes (i.e. match) a word of its language.
There exist many algorithms to do this transformation and the fastest computes
NFAs. We chose Briiggemann-Klein’s algorithm’s[6] with the following charac-

teristics (with n the size of input regular expression):
o Optimal time complexity: O(n?).
o Automata size: O(n) (one state for each symbol occurrence).
o No e-transitions.

o One initial state.

This algorithm is an improvement of the Glushkov’s algorithm [8] that basi-
cally computes for each symbol which ones may follow. Symbols become states,
and those that may follow become destination of a transition from the former to
themselves. This is the reason why we relied on this algorithm, the reason why
we could introduce a new symbol (the semicolon) and know which is the one
and only state it refers to.

There are a lot of set unions during computation of Glushkov automaton
and in order to make them disjoint, Briiggemann-Kleinintroduced the so-called

Star-Normal Form.

Before applying the Glushkov algorithm, the regular expression is trans-
formed into star-normal form which preserves the language and changes from
cubic to quadratic complexity the next algorithm through making unions dis-

joint.

There exists also an optimal parallel algorithm presented by Ziadi [62] to do
this transformation. However, the chosen algorithm is processed in parallel on
each vector component, thus, using a parallel algorithm will not benefit our

transformation.

After application of the Briiggemann-Klein’s algorithm to all regular expres-

sions, we get:

Vie [P]/ Ai = (Qi/stnr(Sésn/Iir Fi)

where A’ is an NFA.

4.2. From regular expression to finite automata 33

Whether we want to determinize (remove indeterminism) or minimize our
automata, if a transformation is desired, it is now possible to map this trans-
formation on the obtained automaton vector. Evidently, determinizing a desyn-
chronized automaton is not guaranteed to determinize the BSPA obtained after

complete transformation.

Definition 14 « : 2 — (2*x X)re — (2*x X)re

Left extend of syntactic position.

be(F-G)=(beF) - (beG
be (F+G)=(beF)+ (b+G)
be F* = (beF)*

be (Ua) =(b-V,a)

b e € =€

b. © =0

Definition 15 posex : Xre — (2*x X) re

Localizes symbols of a regular expression.

posex(F - G) = (0«posex(F)) - (1+posex(G))
posex(F + G) = (0+posex(F)) 4 (1+posex(G))
posex(F*) = (0« posex(F))"
posex(a) = (e,0)
posex(€) =
posex (D) =

Definition 16 pos : (2*x) re — P(2*x ¥)

Compute the set of all (localized) symbols of a regular expression.

34 Chapter 4. From BSP Regular Expression to BSP Automata

Definition 17 glushkov : (2*x X)re — G

Computes first, last, null and follow which are necessary to compute the au-
tomaton. Intuitively (the formal Glushkov’s properties are on p.35),
first - all symbols that can be first of a word in the language
last : all symbols that can be last of a word in the language
null : has the value {e} if € is in the language, @ otherwise.
follow : all symbols that can follow a given symbol of a word in the language
first = First'(E),
last = Last'(E),
null = Null'(E),
follow = Ax.Follow' (E, x)

glushkov(E) =

where

def 17.1 Null' : (2*x X)re — {{e}, D}

Null' () = Q@ (1)
Null'(¢) = {e} (2)
Null'(x) =0 (3)
Null'(F+G) = Null'(F)UNull'(G) (4
Null(F-G) = Null'(F)NNull'(G) (5
Null (F*) = {e} (6)

def 17.2 First' : (2*x Z)re — P(2*x X)

First (@) = @ (1)
First'(€) = Q 2)
First'(x) = {x} (3)
First' (F+G) = First'(F) UFirst' (G) (4)
First'(F-G) = First'(F) U (5)
Null(F) - First'(G)
First(F') = First'(F) (6)

def 17.3 Last’ : (2*x Z)re — P(2* X X)

4.2. From regular expression to finite automata 35

Last' (@) = @ (1)
Last' () = Q 2)
Last'(x) = {x} (3)
Last'(F+G) = Last'(F)ULast'(G) (4)
Last'(F-G) = Last'(G) U (5)
Null(G) - Last' (F)
Last'(F") = Last'(F) (6)
def 17.4 Follow' : (2*x Z)re — (2*x Z) — P(2*x)
Follow' (®,x) = (1)
Follow' (e, x) (2)
Follow'(a, x) = (3)
Follow'(F, x) if x € pos(F)
Follow' (G, x) if x € pos(G) W

Follow'(F,x) UFirst(G) if x € Last(F)
)

(
Follow' (if x € pos(F) \ Last(F) (5)
()

%)
%)
%)
Follow' (F+G,x) = {
Follow'(F - G,x) = {

Follow' (G, x) if x € pos(G
! /1~ . T . el
Follow(F,x) = Follow/(f, x) U First(F) Tf X € Last(_P) - »
Follow' (F, x) if x € pos(F) \ Last(F)

Remark 17.1. The recursive clauses defining Follow(_,_) do not intersect each
other because x is a localized symbol, and therefore occurs in at most one of the
sub-expressions. For example in Follow(F+G, x), it is impossible to have both x €
F and x € G because x, being a localized symbol, refers to a unique occurrence
in the global regular expression.

Glushkov’s properties
prop 17.1 (Null) :
{e} if e € L(E)

@ otherwise

Null(E) = {

36 Chapter 4. From BSP Regular Expression to BSP Automata

prop 17.2 (First) :

First(E) = {x €(2°x %) | Tw e (2°x %) xw € L(E)}

prop 17.3 (Last) :

Last(E) = {x € (2'xX) | Fwe (2"x L) rwx € L(E)}
prop 17.4 (Follow) :

Follow(E, x) = {y €(2"x %) | Fve (2x)", Fw e (2"x X)* : vxyw € L(E)}

Proof It is proven in section A.1 that the previous definitions satisfies the
properties (i.e. Null = Null',First = First',Last = Last' and Follow = Follow').
From this point onwards, they will be referred to with the same name (without
the prime, e.g. prop. Follow and def. Follow).

O

Definition 18 glu_autom : Lre — G — (Q,%,6, I, F)

Uses the former regular expression with first, last, null, follow to compute the
automaton.

let g1 a fresh new state.

(

Q = pos(posex(E)) U {q1}

2 =2

5 { Va € ¥,6(q1,a) = {x | x € first,snd(x) = a}

] vxe (2*x X),Vae L d(x,a) = {y | y € follow(x),snd(y) = a}

I ={q1}
F - {lastu {gq1} if null = {e}

last otherwise

Star Normal Form (SNF) is introduced by Briiggemann-Klein[6]. Normal
form of a regular expression used as preprocessing to make def. glushkov faster.
Indeed, during processing of def. Follow, the union in case (5) is necessarily dis-
joint (no elements are found in both sets). However, the union in case (6) may
not be disjoint and forces to ensure that no duplicates exists which is costly. Yet,

4.2. From regular expression to finite automata 37

a regular expression in SNF makes this union disjoint. See ex. 1 for an example.
L(E) = L(snf(E)) is proved in [6].

Definition 19 snf : Zre — Xre

snf(E) = E®
where Null®(E) = if Null(E) = {€} then T else L
E* = Match E with E°* = Match E with
0 =0
o = O e 50
€ — € X =X
F+G — Fo*+G°*
X — X (

F*.G* if =Null®(F) A -~Null®(G)
F+G — F*+G* F°*-G* if =Null®(F) A Null®(G)

F*-G°* if Null®(F) A =Null®(G)

| Fo*+G>* if Null®(F) A Null®(G)
F* — (F°*)* F* —s F°°

F-G— F*-G*

Example 1: let r = (a*b*)* a regular expression. There is no need to localize r as
a and b only have one occurrence of each. Let us go through the computation of

which symbols may follow a a in r.

Follow(r,a) = Follow((a*b*)*, a)
= Follow(a*b*,a) U First(a*b*) [a € Last((a*b*)) |
(1) ()

The two operands are computed separately to observe whether the union is

disjoint or not.

(1) Follow(a*b*,a) = Follow(a*,a) U First(b*) [a € Last(a")]
= Follow(a,a) U First(a) U First(b) [a € Last(a*)]
- @ U {a} U {B}
— {ab)

38 Chapter 4. From BSP Regular Expression to BSP Automata

(2) First(a*b*) = First(a*) U First(b*) [Null(a*) = {e}]
= First(a) U First(b)
{a} U {b}
= {a,b}

After computation of both operands, it appears the union is not disjoint be-
cause elements in one are found in the other (actually even all of them). We go
through the same process after computation of SNF.

snf(r) = (a*b*)**

(a*b*)oo*

= (a*°® + b*°*)* [Null®(a*) A Null®(b*) |
(ao boo)

=(a+0b)*

We compute followers of a in snf(r).

Follow(snf (r),a) = Follow((a+b)*, a)
= Follow(a + b, a) U First(a + b) [a € Last((a*b*)) |
= Follow(a, a) U First(a) U First(b)
=Q@U{a}U{b}
= {a,b}

We remark that all unions were disjoint in this computation. In fact, It was
proved in [6] that all unions are always disjoint in the computation of followers
in a regular expression in star normal form. This allow the use of a simple data
structure with unions in constant time without worrying about duplicates to
remove which would makes unions in O(#n - log(n)) at best.

Definition 20 BK : X re — X nfa

Briiggemann-Klein’s algorithm computes a NFA from a regular expression

BK(E) = glu_autom(E) o glushkov o posex o snf(E)

4.3. Synchronization 39

4.3 SYNCHRONIZATION

We define two functions src and dst that select all transitions labeled with
semicolons and respectively give the set of source state and destination state of

these transitions.

Definition 21 6* : Q — X* — Q
0*(q,upuy ... um) = 6(...(6(6(q,u0),u1) ..., Um)

Definition 22 src : N — ((Q x (ZU %)) — Q) — P(Q)
Get the source state of each semicolon transition annotated with a given ¢

Srct((sdsn) = {‘7 | Elq/ €Q, 5dsn(q/}t) = q/}

Definition 23 dst : N — ((Q x (2U.¥)) = Q) — P(Q)
Get the destination state of semicolon transitions annotated with a given ¢

dStt(édsn) = {q/ | Elq S Qrédsn(qr;l‘) = q/}

The next two functions give the set of all possible combination of sources (or
destinations) state of semicolon transition ¢ for all transitions in every automata
of an automata vector. The set of source (resp. destination) vector models the set

of possible configuration before (resp. after) the synchronization barrier t.

Definition 24 Vs, Vst : N — ((Q X (ZUY)) — Q)p — P(QF)
Map src/dst on each of the p automata transition function and combine re-

sults with a Cartesian product.

i -1
VStTC(<5[ljsn>l'€[p]) = Srct(égsn) X X Srct(égsn)

; -1
v (8)ierp) = dst'(69,) x -+ x dst' (87 _")

The synchronization function gathers all automata of the input vector by
computing A from semicolon transition and thereby removes semicolon from
the alphabet.

Definition 25 Sync : ((ZU %) nfa)’ — (%, p) bspa

40 Chapter 4. From BSP Regular Expression to BSP Automata

Computes a BSPA from a vector of NFA whose labels includes semicolons
representing the end of vectors from the original BSPRE.

Sync(((Q")ie(p) Zdsns (O icrpls (Iicrp), (Fiep))

= ((Qiepp) 20 (8)icp) Ticpp) (Fiegp) D)

where

U (U U(w))

tel.7| \gearg' gl crest arg' = Vérc(@ésn)iem)
= 51171511\ U (q,5t)) € 5dsn rest = Vdst(<5tzisn> elp)
/tey
Y= 2o \ 4

Remark 25.1. During desynchronization (Dsync : (X, p) bspre —((2U.7) re)?),
the alphabet is enlarged with . and becomes the same for each RE of the vector.
Then, the alphabet is preserved during BK which means, the p alphabets are
identical and their value is named X;,. For this reason, X, is written instead

of <Ziisn>i€[p] as argument of Sync.

4.4 ALGORITHM EXAMPLE

For a better understanding, we illustrate our algorithm with the following
example. We choose this simple BSPRE as input of our algorithm:

R=((a,b)+(c,d))e,f)

This expression represents the BSP language {(a,b)(e, f), (c,d){e, f)}

Desynchronisation applied to R results in the following regular expression
vector where the semicolon keeps synchronization information (;; marks the end

of vector number t which means the synchronization barrier ¢).

Dsn(R)={((a;o+cn)en , (bo+d;1) fn)

4.4. Algorithm example 41

Briiggemann-Klein’s algorithm is mapped to each vector components and re-
sults in the automata vector of Figure 4.3. Legend of the NFA (and BSPA after)
is as described section 2.4.3, initial states are hexagon and final states are double

circles. Computation and drawings were automatically made by our software.

Figure 4.3 — BSP automaton desynchronized

Synchronization of above automata leads to the following BSPA (Figure 4.4)
where all ;; are glued together to synchronize automata with A.

Figure 4.4 — BSP automaton synchronized

DETERMINIZATION OF BSP AUTOMATA

CONTENTS
5.1 LOCAL INDETERMINISMt vv vttt e it 43
5.2 GLOBAL INDETERMINISM . . . ¢ . vttt ettt et e et 44
5.2.1 Problem statement 45
522 Indexing L L oL o 45
5.3 BSPA DETERMINIZATION ALGORITHM ¢ . o oo v vt .. 47

BSPA produced from BSPRE by the transformation introduced in Chapter 4 are
(generally) not deterministic. In order to make BSPA more than a theoretical
tool, the first step is the determinization. Determinism represents annihilation of
ambiguity and prevents backtracking from occurring during matching thereby
avoiding any loss of efficiency.

In this chapter, non-deterministic BSPA will be referred as NBSPA and deter-
ministic BSPA as DBSPA. This chapter starts by enunciating the classical deter-
minization of non-deterministic finite automata to solve local indeterminism of
NBSPA in section 5.1. Follows the crux of the problem: the global indeterminism
of which solution is provided in section 5.2. Articulation of these is detailed in

section 5.3.

5.1 LOCAL INDETERMINISM

Before introducing the determinization of BSPA, we clarify here determina-
tion of non-deterministic finite automata (NFA). It serves as both a reminder be-
cause BSPA determinization shares a similar style and a subroutine definition for
the latter. From here onwards, finite automata types (i.e. (n+d)fa and (n+d+e)bspa)
will no longer be parametrized by their alphabet, which will remain the same
during determinization, but by their states.

43

44 Chapter 5. Determinization of BSP Automata

An important function of determinization is the closure of e-transitions. It
return states given in argument with those connected by e-transitions. It is also
the least fixed point of the following operator on sets of states Q.

Definition 26 e-closure : 29 — (Q x (ZU {e}) — 29) — 2€

e-closure(Q,8) = QU <Lé€—closure(5(q,e),5))
ge

Unlike functions presented previously which were written in functional fash-
ion, determinization algorithm is widely known in its imperative form thus the
remaining of this chapter is written with algorithm written in imperative fashion.

We note determinized states (g), functions () and set of states (Q) with the
notation g4,; and Q, respectively. The following algorithm is known as the
Scott-Rabin algorithm. It was not put in preliminaries because our algorithm,

following right after this one, lean greatly on it and have a very similar structure.

Definition 27 determinize : Qnfa — 29 dfa

input : (Q,X%,4,IF)
output: (Q4 %, 0454 Fi)
begin
sq4 < e-closure(I,9)
5 W {Sd}
while W # @ do
g4 < select_ from(W)
W WA {q4}
for each a€ X do
o p4 < e-closure(Ud(q,a),)

qEqd
64(9a,a) < pa
if p; & WUQ,) then

W WU{pd}
done
15 Qg QdU{Qd}
done

Fd%{QdEleaqe%,qEF}
end

5.2. Global indeterminism 45

5.2 (GLOBAL INDETERMINISM

Determinization of NBSPA presents a new difficulty that does not exist for
NFA. Local indeterminism is an ambiguity for é-transitions and was treated in
section 5.1 with determinization for NFA. However, global indeterminism, which
arise when a delta transition has different outputs for the same input cannot be
resolved by a mere merging of outputs.

5.2.1 Problem statement

Take a look at Figure 5.1. In subscript is written the identifier of the automata

vector component.

4 A

local indeterminism

global indeterminism

Figure 5.1 — NBSPA with language L = {(s,a){a,a), (s, €)(a,b), (s,€)(b,a)}

If output of A((20,01)) was the merge of states 3y and 4 as well as 31 and 4,

then language would become:

L= {(s,a){a,a), {s,€){a,b), (s,€)(b,a), (s,€) (a,a), (s, €} (b, b))}

Instead of L = {(s,a)(a,a),(s,€)(a,b),(s,€)(ba)}. Language is locally un-
changed but globally, the new language is the Cartesian product of the union
component-wise of the previous language recognized by the part of the au-
tomaton following the merged states. In our case, the union component wise
of {(a,b),(b,a)} is ({a,b},{b,a}) of which Cartesian product of its components
is {{(a,b),(b,a),{a,a),(b,b)}. This Cartesian product occurs because the distinc-
tion brought by A is removed. Informally, in the NBSPA, the computation of a

non-deterministic A-transition lead to one of the state vectors outputs whereas

46 Chapter 5. Determinization of BSP Automata

merging those outputs is the same as allowing the non-deterministic A-transition
to output any combination of those vectors thereby enlarging the language with
those combinations.

5.2.2 Indexing

However, those states must be merged, otherwise global indeterminism will not
be resolved. Our solution evolved from the key idea of duplicating the automata
for each output of A-transitions before determinization. Merging A output states
after duplication do not change the language because the distinction previously
brought by the several outputs of the non-deterministic A-transition is translated
to the several duplications.

We applied our solution for determinization of Figure 5.1. The result of our
determinization is displayed in Figure 5.2. In superscript is written the identi-
fier of the duplication. State names are the concatenation of identifiers of state

merged (separated by underscores).

4 2\

Figure 5.2 — Determinization of NBSPA in Figure 5.1

Finite automata theory specify that automata have a set of states, not a multi-
set (bag) which implies that states cannot have doubloons. In order to duplicate
states, they are thus given a different index for each duplications. Duplicated (or
indexed) automata have the type (Q x IN) nfa. Note that index is reset for differ-
ent each A input thereby limiting duplication to non-deterministic A-transitions.

Our algorithm for duplication is named index_reachable because it extract and
index a sub-local part of a BSPA. The part extracted is reachable by J-transition

from the set of initial states given until states within an input vector of A and the

5.3. BSPA determinization algorithm 47

latter are returned as final. To extract which state vector are inputs of A, we rely
the domain of A.

Definition 28 D(f) : (a — p) — 2%
D(f) is the domain of the function f. It is the set of all possible inputs of f.

The algorithm index_reachable was written with a structure very similar to
determinize. The first argument ¢t : IN is the index given to all states of the ex-
tracted part. Arguments i : IN and A : (QF — 29") are only used line 17 to build
final states. Other arguments are components of a classical NFA of which final
states are not used.

We note indexed states (g), functions (J) and set of states (Q) with the notation

7+,0r and O, respectively.
Definition 29 index_reachable : N — N — (QF — 29") — Qnfa — (Q x N) nfa

input : t,i,A,(Q%4,1,)
Output : (Q,\’/ Z‘/ (5,\’/ 1.\'/ F\)
begin

[, ¢+ qUGI (g,t)

s W I,
while W # @ do

(g,t) < select_ from(W)

WeWA{(q,8)}

for each ped(q,_) do
" Ov(g,t) < (p, 1)

if (p,t)¢ WUQ,) then
W«WU{(pt)}

endif
Oy 0:U{(q,t)}
15 done
done
Fy {(q,t) €0 (...q,..)€ D(A)}
end

5.3 BSPA DETERMINIZATION ALGORITHM

Determinization of BSPA proceed superstep per superstep. The main routine
starts from a delta input § and locally duplicate the reachable part of each of its

48 Chapter 5. Determinization of BSP Automata

output before determinizing the union of these parts. The routine restarts from

each A-input reached.)V is the set of A input reached.
Definition 30 determinize_bspa : Q nbspa — 22N dbspa

input 1 ((Qiefp) /(8")iefp), (I iefp)s (Fielp), B)
output: ((Q))ic(p), Z (0)ic[p) (Sh)iclp) (Fi)iclp) Dd)
begin
par i=0 to p—1 do
5 Ay ¢ index_reachable(0,i, A, Q', %, 6%, I, F')
(Q), %, 64,5, Fi) + determinize(A.)
done

while W # @ do

" Gy < select_from(WV)

W =W A\{4a}

T« vijellg, Un@)

t <0

A O
15 for each g7 do

par i=0 to p—1 do

t <~ t+1
done
20 done
par i=0 to p—1 do
(P, %, d,rl, Ft) « determinize(A.)

done
25 Ni(Ga) < 74
at,vie [pl,3q,t) €4,
q°,...,q"71) € D(A)
d

W g e LLFi |
A gl & D(Dg)

i€[p]
done
par i=0 to p—1 do
Fi + {q; €Qi |39 €q,q € Fl}
30 done
end

W {qd c iel%]—"é | Vi € [p],3(q,0) € 4, (4°, ..., g7 1) € D(A)}

Ay« A Uindex_reachable(t, i, A, Q,%, s, pi, Fi)

(Q 05y Fi) = (QuU Py, By 03U dy, 53, F5)

Uw

BSP REGULAR EXPRESSION FOR
PARALLEL MATCHING OF REGULAR
EXPRESSION

CONTENTS

6.1 PARALLEL REGULAR EXPRESSION MATCHING o v v v v v v v
6.1.1 Sequential matching 0 L.
6.1.2 Parallel matching
6.1.3 Inputdistribution o oo Lo
6.1.4 Precondition o o o
6.2 FROM REGULAR EXPRESSIONS TO BSP REGULAR EXPRESSIONS
6.2.1 From tree-form regular expression to sequenceset
6.2.2 Algorithm overview
6.2.3 Splitting the regular expression
6.2.4 Splits distribution into vectors L0
6.3 EXPERIMENTAL EVALUATION v\t vvt ittt e
631 Context

6.3.2 Results

6.1 PARALLEL REGULAR EXPRESSION MATCHING

Applications of regular expression matching ranges from mainstream ap-

plications such as grep [17] to specialized applications including for example

deep packet inspection [50, 35, 61, 16]. Most existing techniques used for parallel

49

50 Chapter 6. BSPRE for Parallel Matching of RE

matching of regular expression simulate an execution from a subset of the DFA
states [24, 48, 16]. Other techniques makes the automata suitable for parallel ex-
ecution [56], or rely on dedicated software such as FPGAs [37, 40] or TCAMs
[47]-

The novel approach introduced in this chapter focuses on regular expres-
sions (RE) by transforming them into a parallel form called BSP regular ex-
pressions (BSPRE) and derive parallel BSP automata (BSPA). The transformation
from BSPRE to BSPA was proposed in [58]. Such technique was not possible be-
fore [19] as no model for parallel regular expression such as BSPRE existed to
the best of our knowledge.

The remaining of this section 6.1 details the process of parallel regular ex-
pression matching as an extension of sequential matching, precise our input
distribution and define preconditions for the next section. The transformation
from RE to BSPRE is defined and explained in section 6.2. Our approach be-
gins by transforming the regular expression into an intermediate form. In order
to match an input split among p processors, the regular expression must also
be split and the intermediate form make this computation easier. The splits are
then allocated into p-sized vectors, each vector representing a potential split of
the input. The BSPRE eventually obtained is the disjunction of those vectors. Ex-
periment results are provided and discussed in section 6.3. Section 6.4 conclude
this chapter.

6.1.1 Sequential matching

The sequential matching of regular expression is represented in the following
tig. 6.1 and involves two transformations.

s 2

RE
(1)

NFA

(2)

\%
DFA

= J

Figure 6.1 — Sequential matching

The first transformation (1) is the computation of an acceptance machine

6.1. Parallel regular expression matching 51

for the language represented by a given regular expression. Algorithms known
for this transformation include algorithms of Thompson [59], Glushkov [8] and
Brzozowski [7].

Transformation (2), called determinization and explained previously in sec-
tion 5.1, makes the acceptance machine deterministic in order to remove ambi-
guities. An ambiguity imply the exploration of several paths in the acceptance
machine, thereby decreasing the efficiency. Thus, although this transformation
is not mandatory, most regular expression matching approaches favors deter-
ministic finite state automata (DFA) over non-deterministic finite state automata
(NFA) for their efficiency. The matching is processed by the computed DFA. The
output is a boolean value representing whether a given input word w € **
belong to its language.

6.1.2 Parallel matching

Our parallel matching scheme of a regular expression is represented in fig. 6.2

and requires four transformations.

s A

(. J

Figure 6.2 — Parallel matching

1. D:IN = X* — ((Z9)P)*
D(p, w) Distributes word w to a p-sized vector of processors.

2. re_to_bspre : IN — X.re — ¥ bspre

Computes R, = re_to_bspre(p, R) where L(R,,,) = {D(p,w) | w e L(R)}

3. (Sync o BK? o Dsn) : L bspre — X nbspa

Generates the acceptance machine of a BSPRE.

52 Chapter 6. BSPRE for Parallel Matching of RE

4. determinize : X.nbspa — X dbspa

Makes the acceptance machine deterministic.

The first transformation is needed in any parallel program where data is not
shared by processors. If the memory is not shared then data needs to be dis-
tributed. Section 6.1.3 details two different distributions where the BSP word
generated is a sequence of a single BSP vector. This way, only one synchroniza-
tion is performed. The second transformation will be detailed in section 6.2. The

third and fourth transformations were explained in chapter 4.

6.1.3 Input distribution

The main algorithm designed in section 6.2 will automatically compute a BSPRE
whose language is {D(p,w) | w € L(r)} for p a given natural integer and r a
given regular expression. Thus, before designing the algorithm, an input distri-
bution D must be fixed. Note that only distributions computing a single vector,
and not a sequence, were considered for performance reasons. In order to give
a better illustration of them, the following example will be tackled according to

both distributions considered: cyclic and block distribution.

Example 2 (string search) : The chosen example is the following simple but widely
use-case of regular expression matching. We want to know if there exists a string,
say “Valiant”, somewhere in a file. In POSIX, this expression may be written:
r =." Valiant .*
Where ‘. means any characters. Note o = Vo; € X, (09 + 01 + ...). The above

expression is easily transformed into the following regular expression:

r = ¢ Valiant ¢*

6.1. Parallel regular expression matching 53

a) Block distribution

Figure 6.3 — Block distribution into 3 processors

Note n the input size. The block distribution D, distributes each letter u; (with
0 <1 < n) in a word vector at processor i/ p.

Db(p/ winput) = Db(P, ug. .. un_l)
= (UQUIUD -y U /peve g on oe , e Up 3l Uy 1)

Example 2 (continuing from p.52) : We choose processor number p = 3 (a little
value is taken for the sake of clarity). Knowing the distribution used and p, we
design the BSPRE R. R will be a disjunction with one case for each acceptable
regular expression vector. Let m be the length of the string sought, we assume
that n > p - m so that the string cannot be split between more than two proces-
sors. This condition will be refined and generalized in section 6.1.4. There is one
possible case according to which location “Valiant” might be and one case for
each possible split.

([(o , o ,0* Valiant o*)
+ (o , c* V , aliant 0")
+ (o , c* Va , liant o)
R =
+ (o ,0* Valiant o*, o)
| + (0* Valiant 0¥, o* , o*)

In this example, the resulting BSPRE is a disjunction of m - (p — 1) 4 1 cases.

54 Chapter 6. BSPRE for Parallel Matching of RE

b) Cyclic distribution

Figure 6.4 — Cyclic distribution into 3 processors

The cyclic distribution D, distribute each letter u; in a word vector at location
i modulo p.

Dc(p, winput) = DC(P, up... un,l)
= <u0upu2p"- sy UUpp1 oo yURUPLD ooy vee e >

Example 2 (continuing from p. 53) : Under the same conditions as in the previous
distribution, we design the BSPRE. R will be also a disjunction with one case
for each acceptable word. In the cyclic distribution, knowing the location of one
letter, means knowing the location of all others. Say u; is located at j then u;; is
located at (j+1) modulo p.One letter has p possible location, so R here yields

p cases.

(c*Vito* , c*aac* , 0" 1lno*)
R=¢ 4+ (¢*1lno* , c*Vito* , 0¥ aac*)
+ (0*aac* , 0*lno* , 0" Vito*)
However, it appeared that regular expressions parallelized according to this
input distribution are not always representable with BSPRE.

Example 3 (Conterexample) : Take for example the regular expression (aa)* and
find a BSPRE representing the BSP language L = {DC(2,w) |w € L((om)*)}.
The best we can find is (a",a") (to not confuse with (a,a)* which represents a

different language). However its language is not regular and it is not a BSPRE.

From here onwards, only the block distribution will be considered and the

function re_to_bspre will be designed accordingly.

6.2. From regular expressions to BSP regular expressions 55

6.1.4 Precondition

The algorithm presented in section 6.2 requires a precondition on the input size.
It was previously claimed in section a) that ex. 2 requires the input to be longer
than p - m with m the length of the string searched. This precondition prevents
for example the string “Valiant” from being split in two locations by the dis-

tribution. This section generalizes this condition to any regular expression.

Definition 31 re_size : X re — IN

resize(F + G) = max(re_size(F),resize(G)) (1)
re_size(F - G) = re_size(F) + re_size(G) (2)
re_size(F*) = 0 (3)
re_size(a) = 1 (4)
re_size(e€) = 0 (5)
re_size(®) = 0 (6)
with max trivially defined as:
Definition 32 max:IN - IN — IN : max(a,b) = { a ifa> b.
b otherwise

Having defined re_size, the precondition is written:

Proposition 32.1 (large input).

|Winput| > p X resize(R)

6.2 FROM REGULAR EXPRESSIONS TO BSP REGULAR EX-

PRESSIONS

6.2.1 From tree-form regular expression to sequence set

Since the input is distributed in a sequence of blocks, it was easier for the algo-
rithm design to also consider the regular expressions as a sequence rather than
a tree. There is obviously more than just products in a regular expression and it
cannot be completely represented with sequences. Below is our representation

of regular expression :

56 Chapter 6. BSPRE for Parallel Matching of RE

Definition 33 intermediate form : re® * re” x re®

re® = re” set unions
re” = re® list concatenations
re®* = (re®)* |a|e| D closure, symbols, epsilon, nil

As one may remark, unions, concatenations and closures are not intertwined
with each other as it is the case for regular expression. Here, the type impose
the following hierarchy: closure of sets of sequence (list) of perhaps, recursively,
closure of ...etc. Transforming the regular expression into such a hierarchy is
similar to a polynomial expansion in algebra or obtaining a disjunctive normal
form in propositional logic. This transformation is described by the function
provided below:

Definition 34 re_to_re® : X re — X re°

Converting back to a regular expression presents no subtlety and is described
here with the following three mutually recursive functions.

re®_to_re : Xre® — Lre,

Definition 35 re®_to_re, re”_to_re,re®_to_re : { re’_to_re : re” — Xre,

re®*_to_re : Yre® — Xre

6.2. From regular expressions to BSP regular expressions 57

Shape of r Shape of '/
+ +
/N VRN
* d * d
\ \
/ \ ¢//T\\x
-+ c . ' .
/N /N 7N\
a b a c b c

Figure 6.5 — Shapes of r and 1’

re®_to_re(sy Usy) = re®_to_re(sy) + re®_to_re(sy) re*-tore(s*) = re®to_re(s)*
re°tore({l1}) = re"to_re(l)

re®_to_re({}) — 0 re®tore(a) =a
re”_to_re(ly @ Ip) = re_to_re(ly) - re”_to_re(l) re* tore(e) — e
re"_to_re([r]) = re®_to_re(r)

re”to_re([]) =€ re®_to_re(@) = @

Converting back and forth may not be obvious merely with the converting
functions definitions and is illustrated through example 4.
Example 4 : Let r € X re a regular expression, defined below in equation (1). The

converting functions defined above are applied on r.

(a+b)-c)*+d (1)

(
(@l bz} ldl @
(ac+be)*+d =71 @)

r
re_to_re°(r)
)

re°_to_re(re_to_re(r)
Although r # ', we have L(r) = L(+')

Figure 6.5 illustrate the expansion from product of disjunction into disjunc-
tion of product happening in ex. 4. Moreover, although the regular expression

shape is not preserved, the language is.

Lemma 1 (Conversion preserves language). Vr € Zre,

L(re®_to_re(re_to_re®(r))) = L(r)

58 Chapter 6. BSPRE for Parallel Matching of RE

Proof of lem. 1 is done by structural recursion on regular expressions.

6.2.2 Algorithm overview

We present an overview of the algorithm with its main functions.

r

re_to_re®

distribute_re re _to_re

2. re vector

> re” vector

re _to_re

~

Figure 6.6 — Overview of re_to_bspre algorithm

re_to_re® transforms the regular expression into our intermediate form, re°, that

is a set of re".

distribute_re relies on splits to reflect input distribution in the regular expression,
creating different possible splits. Those splits are then distributed into vec-

tors.
re_to_re” is mapped on the vectors to output regular expression vectors.

disj computes the disjunction of regular expression vectors into a BSPRE.

6.2.3 Splitting the regular expression

Let us proceed with the following motivational example.

6.2. From regular expressions to BSP regular expressions 59

Example 5 : In this example, the RE a*bba* is distributed into a BSPRE with

vectors of size 2. Vectors in red color are not computed by the algorithm.

re_to_bspre(2,a*bba*) = (a*bba*,a*) + (a*b,ba*) + (a*,a*bba*)
+ (a*, bba*) + (a*bb,a*)

In fact, the BSPRE output in ex. 5 would have the same language with or
without the red vectors. And purposely not computing them add complexity
to the algorithm. So why bother avoiding those red vectors? This is merely a
question of size. After computing the BSPRE, a BSPA will be derived and the
time it takes to build and its size will be dependent on the size of the BSPRE [58].
After deriving the BSPA, we may want to determinize it which is exponential
with the BSPA size. Therefore the BSPRE size is kept to a minimum as much as
possible. So, (a*,bba*) and (a*bb,a*) are not computed because L((a*,bba*)) C
L({a*,a*bba*)) and L((a*bb,a*)) C L({a*bba*,a*)). Those insights will be useful
to understand the choices made in the next function, splits.

The critical point of the whole algorithm is to compute where the regular
expression can be split in order to represent all possible input blocks separation
by the input distribution. The function splits computes the location of such splits.
A split is represented by a couple where the first member is the sequence before
the split and the second member is the sequence after the split.

Also, the following property holds.
Proposition 35.1. VI € re”, V(11 rl) € splits(l),ll @ rl =1

Definition 36 splits : Zre” — (X re” x Xre”) set

splits(r :: 1) = spliter([r],1) (1)
splits([1) = {} (2)

60 Chapter 6. BSPRE for Parallel Matching of RE

where

I e@ll, ;L ,
, (1, ") € split_star(Ry)
spliter(1l, R} :: R} :: rl) = " @ (R3 :: 7l)

U spliter(1l @ [R}], R} :: 1])

{ (ll @il)
spliter(11, R} :: Ry :: 1l) = rl’ @ (Ry :: 7l)

U spliter(ll @ [R] @ [Ry]), 1)

(I,rl') e split_star(Rl)}

spliter(ll, [R*]) = { (nell',sl"y | (I',rl') € split_star(R)} (5)
spliter(11, R :: rl) = {(Il, R :: v1) } Uspliter(ll @ [R],rl) (6)
spliter(11,[]) = {} (7)

An important algorithm invariant is that splits is always called on sequences
that will eventually be surrounded by closures. Therefore, none of the split cou-
ple member can be [], otherwise a superfluous vector like the ones of ex. 5 would
be created. Hence, equation (1) of splits calls spliter with a non empty left mem-
ber. Equation (6) is the recursive case on unstarred expression which add the
current split and recursively calls with the first symbol of right member becom-
ing the last of the left one. Thereby reducing the size of the right member until
terminal case (7) occurs. Equations (4) and (3) requires split_star which computes
the splits of a closure. The only difference between those two cases right hand
side is the recursive call. If a starred expression is followed by a symbol (4), then
the symbol is also put in the other side, again to avoid splits leading eventually

to superfluous vectors (i.e. red cases of ex. 5).

Let us see some examples of how closures are handled. One may wonder
why closures are not kept as such and merely duplicated across adjacent vector

components. Indeed, such cases exist as shown in ex. 6.

Example 6 :
re_to_bspre(2,(a+b)*,2) = ((a+b)*, (a +b)™)

Remark 36.1. Given a starred expression R* € Xre, if Vw € L(R), |w| < 1 then R*
won’t be modified by the algorithm.

6.2. From regular expressions to BSP regular expressions 61

However such cases are a minority and keeping the starred expression as

such is not enough anymore when starred expression are bigger.

Example 7 : (ab)* is distributed and a could be the last symbol caught by a
processor and b the first caught by the next one because |ab| > 1.

re_to_bspre(2, (ab)*) = ((ab)*, (ab)*) + ((ab)*a, b(ab)*)

The function split_star is mutually recursive with splits. While splits purpose is
to computes the splits of a sequence, split_star manages the starred expression
within the sequence. Conversely, split_star needs splits to compute splits within a

starred expression.

Definition 37 split_star : X.re® — (X re” x Lre”) set

splitstar(R) = ([R*], [R*]) U {([R*] @ll,rl@[RY]) |1 €R,(ll,r]) € splits(l)}

First, this function always return the split with the given starred expression
kept as such for both split members (as needed in ex. 6). This split is added to
the possible splits within the stared expression (ex. 7). For each sequence within
R € X re®, the splits computed are surrounded by the original starred expression.

Incidentally, if all words in the starred expression language have a length
lesser than 1, it means that (1) there is no star inside and (2), VI € R, || < 1. if
|I| = 0 then splits(I) will apply equation (2) of splits and no splits is returned. if
|I| =1 then equation (1) then (7) apply and no splits is returned again. Therefore,
if all words in the starred expression language have a length lesser than 1, then
split_star(R*) = ([R*], [R*]). This proves rmk. 36.1.

It was shown that closures must be split when the expression matches words
longer than a symbol. But whether a symbol sequence must be split is the re-
sponsibility of function until_next_star.

Example 8 :
re_to_bspre(3,abc*de) = (abc*,c*,c*de)

In ex. 8, the regular expression R = abc*de is distributed over 3 components.
If there is only one star in the regular expression, the symbol sequence is not split
because as long as the input size is greater than p X re_size(R), the part before and
after the star must be matched by the first and last vector component respectively.
If there are two stars (ex. 5) or more, the sequence in between must be split

62 Chapter 6. BSPRE for Parallel Matching of RE

because depending on the proportion of input size matched by the closures, the

sequence symbol members may match in a vector component or another.

Definition 38 until_next_star : L re” — (Lre” x Lre”)

until_next_star(l) = helper([],1) (1)

where

helper(11,[1]) = ([],11) (2)
helper(1l, R* :: rl) = (I, R* :: rl) 3)
helper(1l, R :: rl) = helper(lI@[R],rl) (4)

For a given sequence, the function until_next_star calls helper (equation (1))
with an empty sequence to be filled with elements and the given sequence as
second argument on which recursion will occur. Elements will be moved from
the second argument to the first (equation (4)) along the recursion. The function
until_next_star will be called right after a star and the following given sequence is
cut before the first star encountered (equation (3)). The first part being between
two stars, must be split afterwards for the reasons shown above. Conversely, if
no star is encountered then there is no need to split. So, if no stars are found
(equation (2)), the sequence returned is not given in the first couple member
(that would be split) but the second one.

6.2.4 Splits distribution into vectors

Previously was shown how to split the regular expression sequence. Next is
presented how the splits are distributed into vectors.

Definition 39 distribute_re : N — X re” — X re” vector set

distribute_re(p,1) = helper({[],...,[]),0,1) (1)

6.2. From regular expressions to BSP regular expressions 63

where
helper(v,p —1,1) = {vP~! Pl @1} (2)
helper(v,i, R* :: 1) = ((lw)@F,Llitw(mhelper(vi —d@lli+1,r@ l’)) (3)
U treat_star(v' < o' @ [R*],i,1') (4)
helper(v,i, R :: 1) = helper(v' + o' @ [R],i,1') (5)
helper(v,i,[]) = @ (6)
and
treat star(v,i,[]) = @ (7)
treat_star(v,i, R* :: I") = helper(v,i, R* :: 1") (8)
treat_star(v,i,R :: I") = helper(v' <+ o' @ [R],i,1") U 9)

let (bf _star,af star) = until_next_star(R :: I") in (10)

U helper(v' < o' @ 11,i+ 1,7l @ af star)) (1)

(11,rl)esplits(bf star)

Given a vector size p and a sequence [, distribute_re only calls the first auxiliary
recursive function helper (line (1)) with arguments (which are the same for the

second recursive function treat_star):

1. a p-sized vector v of empty sequence that will be filled and duplicated for

each different possible splits.

2. an index i initialized at o. It will grow until p — 1 and marks the vector

location to be filled.
3. the given unmodified sequence / that will be consumed along the recursion.

During recursion, ! size decreases until || and 7 increases until p — 1.

Let us detail some key points in the function.

64 Chapter 6. BSPRE for Parallel Matching of RE

Line (2) is the first terminal case and relates to the vector index i. When helper
is called with the last index, the vector’s last position is filled with the rest of the
sequence.

If the index is not the last then the behaviour depends on whether the first
element is a starred expression. If so, the input that would be matched by the
starred expression may be cut by the input distribution (this case is treated in
line (3)). Else, if the input matched by the starred expression is not cut by the
input distribution, the starred expression is added in the vector (line (4)) be-
fore calling treat_star where a distinction is made according to what follows the
starred expression.

If nothing follows (line (7)) then nothing is returned because the last vector
index is not reached yet (otherwise case (2) would have captured it and the only
call to treat_star do not change the index 7). If another starred expression is found
right after then only a recursive call is needed (line (8)) as the same procedure
needs to be redone. If there is no two closures in a row (line (9)), then there
is a sequence, possibly between two starred expression, whose corresponding
matched input may be cut by the distribution and a splits must be computed (as
shown in ex. 5). If the corresponding input stays within the same position of the
vector input, then the following input may as well. This case is handled line (9)
with a recursive call on the same index. Otherwise, the splits are computed until
the next starred expression (lines (10) - (11)). If no other closures are found by
until_next_star then bf star is empty and nothing is returned because a sequence
without closure could only be put at the last vector position which is impossible

as in line (7).

The function distribute_re distributes a sequence into a set of vectors. However,
the complete algorithm input is not a sequence nor its output is a set of vectors.
Its input should a regular expression and its output, a BSP regular expression.

The function re_to_bspre will call distribute_re and do the necessary conversions.

Definition 4o re_to_bspre : IN — X re — X bspre

6.2. From regular expressions to BSP regular expressions 65

r €reto_re°(R), (1)
re_to_bspre(p, R) = disj | { v | v, € distribute_re(p,r), @)
Vke{0...p —1},0F < re"tore(v*) (3)

]

where
disj(s1 Usp) = disj(s1) + disj(s2) (4)
disj({v}) = v (5)
disj(®) = @)

Function re_to_bspre starts by transforming the given regular expression into
our representation (line (1)), the sequence set. For each sequences in the set,
distribute_re is called (line (2)). Then function re°_to_re is mapped on each vectors
returned by distribute_re (line (3)). After this, a set of regular expressions vectors
is computed. The disjunction of those vectors is the outputted BSP regular ex-
pression. The disjunction is computed by function disj. The BSPRE returned by
this algorithm being a disjunction, without any concatenation or Kleene closure
(at the global BSP level), makes the proof in Appendix A, which does not prove
cases concatenation and closure, sufficient for this application.

Example 9 : As a summary of this section, we detail in this example the process-
ing of ex. 7 by function re_to_bspre. Changes between equations are written in a

different color.

66 Chapter 6. BSPRE for Parallel Matching of RE

re_to_bspre(2, (ab)*)

r €retore’((ab)*),
=disj | { v| v, € distribute_re(2,7), [def. re_to_bspre |

Vk € {0,1},0* « re” to_re(vF))

[|7 e {[{lm0)]},)

§ v | v, €distribute_re(2,7), [def. re_to_re® |

Vk € {0,1}, 0" « re_to_re(vF)

\ Vs

Vk € {0,1},0* « re"_to_re(v

.. ({ v, € distribute_re(2
=disj | ¢ v

aisi | 10| ™ € {([{lwb]}], Hla: b1}]), ([{[a; b}, {a}t], ({0}, {[a; b]}*]) },
Vk € {0,1}, 0" « re”_to_re(v)

def . distribute_re

with split_star({[a; b]}*) = { (W]

a{fopetierion)
((ab)*a,b(ab)*)}

= ((ab)*, (ab)*) + ((ab)*a,b(ab)*) [disj in def. 40 |

([l 0]}], [{a; b]37]), }
a;b]3%,{a}], [{b}, {[a;b]}7])

6.3 EXPERIMENTAL EVALUATION

6.3.1 Context

Experiments were made to compare our approach (Figure 6.7) to the standard
method of parallel regular expression matching (Figure 6.8), referred here as
enumeration [24] introduced by Holub and Stekr and previously discussed in
subsection 3.2.2.a). This work being a proof of concept rather than an efficient

6.3. Experimental evaluation 67

tool aiming to be distributed, the matching was implemented with a high level
language (OCaml) and no particular optimization was brought to the automaton.
In consequence, absolute times are quite high. However, our approach and the
enumeration method were coded and evaluated under the same conditions to

present a relevant comparison.

System configuration All experiments were run with the operating system
CentOS Linux version 7 with Intel Xeon Processor E5-2690 of 40 cores and 251.87
GiB memory. Parallel code was written with BSML o.5 [43], a BSP library for
OCaml.

Input word generation is summarized herein. Our automata are not complete
and only transitions potentially leading to a final state are represented. Conse-
quently, as soon as no transitions are found for an encountered input symbol,
the word is rejected and the result is false (i.e. the input word is not in the lan-
guage of the given regular expression). Therefore, being only interested in the
worst case matching time, we needed input words (files in practice) belonging
to the language of the given regular expression.

The computation relies on Brzozowski’s derivative [7] which, for a given sym-
bol, transform a given regular expression so that its language is reduced to words
starting by the given symbol and truncated from this symbol.

More formally, with D being the derivative, a a symbol, E a regular expres-

sion and L the function computing the language of a regular expression,
L(D(a,E)) = {w | aw € L(E)}

Additionally, the function First (involved in Glushkov’s automata construc-
tion [8]) is used to compute the first symbols of the words represented by a given
regular expression.

First(E) = {a | aw € L(E)}

If a word is a list of symbol and random_pick is a function randomly selecting

an element in a set then the function (make_input) producing the input word is

make_input(E) = let a = random_pick(First(E))
in a :: make_input(D(a, E))

In practice, random_pick is not really random as a certain word length is re-

quired. Brzozowki’s derivative also outputs a larger regular expression than the

68 Chapter 6. BSPRE for Parallel Matching of RE

(aa+b)*
a*b*c*d*

e
—a
—e— a*totoa”
—
—

103

Fa

S Valiant
1000/p

time (sec)

102 | B

1 2 3 4 5 6 7 8 9
proc number

Figure 6.7 — Building+Matching time of 10Go file with BSPA

one inputted. Thus, it is necessary to reduce the regular expression(with prop-

erties such as ©® +a = a or € - a = a) along recursion.

6.3.2 Results

The matching time of 10Go files is observed in Figure 6.7 and 6.8 with a few dif-
ferent regular expressions and up to 9 processors for two method: our method
relying on BSPA and Enumeration, the parallel run of a DFA. Times include both
automata construction and input matching. Due to a time out of 1 hour (3600
seconds), some curves for our method (Figure 6.7) are not drawn until 9 proces-
sors. It comes from the fact the BSPRE size produced is worst-case exponential
with p and determinization is also known to be worst-case exponential with the
size of the automata (2/2!). Thus, for increasing number of processors, the time
required for automata construction eventually out-scales the time required for
input matching (see Figure 6.9). However, before construction time explodes,
our method is faster than enumeration because enumeration requires a transi-
tion computation from each states for each symbol read. To ease comparison, a
reference curve appears in both graphs (—), its equation is time = 1000/ p

6.3. Experimental evaluation 69

—— (aa+b)*
—=— g*b*c*d*
1| —e— a*totoa*
Ja

—— *Valiant.*

— 1000/p

——

—_
S
W

time (sec)

4 5 6 7 8 9
proc number

—_
N
W

Figure 6.8 — Building+Matching time of 10Go file with Enumeration

~¢ matching time of 10'° bytes
~= matching time of 10° bytes
~¢ matching time of 10® bytes
—+ matching time of 107 bytes

~+ matching time of 10° bytes
— BSPA building time

10°
102
10!

109

(09s) swiny

101
102

103

104
1 2 3 4 5 6 7 8 9

proc number

Figure 6.9 — Matching vs building time of BSPA for RE (aa + b)*

70 Chapter 6. BSPRE for Parallel Matching of RE

6.4 CONCLUSION

The transformation from RE to BSPRE was presented in this chapter. This
transformation, added to the transformation from BSPRE to BSPA presented in
previous chapters, enables a novel approach for parallel matching of regular ex-
pression. The scaling of this approach was also evaluated and compared with a
standard in parallel regular expression matching. The transformation from RE
to BSPA is also the first infinite non-trivial family of BSP programs automatically
generated . Our method was faster for small number of processors because our
method only requires the computation of one transition per symbol read. It was
nevertheless slower for higher number of processor because time required to
construct the automata is exponential with p. Our method would also be partic-
ularly suited for applications where the automaton computation time has little
importance or when it is computed beforehand.

We compare now to state of the art in parallel regular expression matching
introduced in section 3.2.

Approaches such as parallel run of automata [36, 24, 48, 16] and speculative
parallel matching [45, 51] we introduced in section 3.2.2.a) involve several sim-
ulations while in our approach, there is no ambiguity: only the computation of
one transition per input symbol read is required.

Method relying on parallel automata [56] we introduced in section 3.2.2.b)
require a reduction to join the results. Instead of joining the local results after
reading the input, we computed the possible splits beforehand.

We over-viewed approaches relying on dedicated hardware such as FPGAs
[55, 50, 5] in section 3.2.3.a) and TCAMSs [47] in section 3.2.3.b) which present
great efficiency for regular expression matching. Such hardware is nevertheless
rare compared to general purpose CPU and not affordable by everyone.

TENSOR PROGRAMMING WITH BSP

CONTENTS

7.1 INTRODUCTION vttt ettt et e e e e e 71
7.2 RELATED WORK 72
7.3 THEORY 72

73.1 Datatypes o 72

7.3.2 Tensor primitives L0 74
7.4 ABSTRACT DATA TYPES AND EXPRESSIVENESS 76
7.5 TYPE-SHAPE SYSTEM« vt vttt ittt e e e et e e 79
7.6 HTL 8o
7.7 PROGRAMMING NEURAL NETSt vv ittt oo 84
7.8 PARALLEL CODE GENERATION AND COSTS . . . « . v v v v v v vu 86
7.9 CONCLUSIONS . . . ot vttt i ettt it e e e 90

7.1 INTRODUCTION

Many pattern-recognition and machine-learning applications now use neural
networks, for example image classification and object recognition in images or
videos. The neural nets are dataflow graphs of linear arithmetic and threshold
operations on the input pixels, structured as array-shaped layers connected by
element-regular dependencies that can be fully-connected or sparse as in con-
volution operations. Layer elements are called neurons. An illustration of neural
nets is given in Figure 7.1, page 85. The application of a neural net to its intended
input is called inference.

The layer structure is hand-defined by neural net experts for each specific task
and the coefficients that constitute the layer operations (called parameters) are

learned by an extremely compute-intensive training phase whose algorithm is a

71

72 Chapter 7. Tensor Programming with BSP

steepest descent optimization with the quality of inference as objective function.
Inference quality is defined in an ad-hoc manner by scoring the results on a large
dataset.

Programming a neural net amounts to the definition of its layers and their
interconnect for inference, then training to obtain high-quality parameters that
are used for the target application.

The work we present here is an attempt to further analyze neural net pro-
gramming as purely-functional non-recursive programming with a small set of
tensor primitives. This leads to a better understanding of the (small) fragment of
linear algebra used in neural net programming. It also builds an almost-universal
basis for building layers and neural nets, the only missing examples for now are
so-called recurrent nets i.e. those with cyclic dependencies.

The rest of this chapter describes our language primitives and a small and
simple DSL called HTL for their application to (acyclic) neural net programming;:
types, semantics, static analysis, syntax, programming examples and design for

parallel code generation and automatic training.

7.2 RELATED WORK

The general inference safety problem is an object of growing interest [20] but
remains an open problem for lack of a notion of dataset-independent specifica-
tion. Yet the implementation of neural nets is evolving from an art to normal
software engineering with platforms [28, 9] that provide libraries and tools for
a high degree of automation in code production and training. A more recent
research direction is the design and implement of DSLs for neural-net program-
ming like Diesel [13] and the more advanced Relay [54]. They allow the devel-
opment of layers as source code rather than black-box libraries, thus improving
flexibility and productivity, and can provide automatic differentiation a key oper-
ation for training. We intend to go one step further and define a "functional MPI
of neural net layers": a set of operations that serve as bridge between the great
variety of layer structures and the complexity of target architectures.

7.3 THEORY

Image or video elements and neural net layers to operate on them are natu-

rally represented as multi-dimensional arrays (called tensors in this context, by

7.3. Theory 73

analogy with the broader theory of tensor algebra). For example a 2-dimensional
image with three color channels leads to a 3-dimensional array of input pro-
cessed by layers of 1- to 3 dimensions.

Our language design therefore begins with multi-dimensional arrays for
which declarative programming languages date back at least to APL [14] and
MOA [21]. Systems like MATLAB [22] are completely based around array data
structures and are heavily used in all areas of signal processing and scientific
computing. Like BSML [41] builds parallel skeletons [12] from a small number
of functional primitives, our tensor primitives can generate a large variety of

layers.

7.3.1 Data types

Quantization [3] is the mapping of values from a large set to a smaller set. For
example using one byte to code some values represented with 8 bytes. Because
quantization is an important technique for neural network implementation [11],
the scalar data types could be concrete and varied (many numerical types de-
pending on precision like single, half, INTS, etc) or at least parametrized on
their precision. But since this choice is independent of the rest of the language,
we only retain int and float in our initial design.

The tensor data type constructor takes a single non-functional type as argu-
ment e.g. float tensor. In mathematical notation we write T° for the tensor
type whose basic elements are from type T. The type T° includes every rect-
angular shape and (non-zero) number of dimensions. Every tensor has a shape
which is a vector of positive integers. If the shape contains only 1s, e.g. [1,1] then
the tensor is equivalent to a scalar. For p = [pg,...,pp_1] a tensor shape, D is
called its number of dimensions".

For n a positive integer, the associated ordinal is [n] = {0,1,...,n —1} =
[0 : n — 1], a non-empty totally-ordered set {0 < 1 < ... < n — 1}. The index set
associated with a shape p is I(p) = [po] X [p1] X ... [oD-1]-

For example if p = [2,1,2] then D = 3 and I(p) = ([2] x [1] x [2]) =
{(0,0,0),(0,0,1),(1,0,0),(1,0,1) }.

The content x(t) of a tensor t € T° is a map from its index set to elements
of type T. So if t is a tensor of shape p on type T then its content is a map (total
function) «(t) : I(p) — T.

In addition to scalars and tensors, HTL programs must manipulate index

It’s best to avoid the word dimension (singular) which is ambiguous.

74 Chapter 7. Tensor Programming with BSP

vectors and shapes, that are certain integer vectors. It is theoretically possible to
merge vectors into the tensor type, but this would blur the distinction between
indexing and data which is not coherent with strong typing and good software
engineering practice. So just as scalars are distinct from singleton tensors, we
define vectors as distinct from one-dimensional tensors.

Let N ={0,1,2,...} and N* = {1,2,...}.
For a tensor t € T°, its number of dimensions is a positive integer

D(t) e NT
its shape is a vector of positive integers of length D(t)
p(t) € (N+)P®
and its index set is a set of vectors of non-negative integers of the same length
I(t) = I(p(t)) € NP®),

To facilitate static analysis and optimization, the language for programming
operations on shapes and indices should not be a complete arithmetic language.
It should be restricted to a fixed number of predefined operations, without gen-
eral recursion. The HTL concrete language design of section 7.6 is coherent with

this choice.

7.3.2 Tensor primitives

HTL programs are built from primitive operations on tensors. Each one has a
precise functional semantics and many possible parallel implementations. The
small number of primitives reduces all compilation and implementation systems
to just those constructions. We present here their specification. Types are refined
in section 7.5 to include shapes. Here, tensors are defined as a pair of shape and
content function.

The tensor constructor init builds a tensor from a given shape and content

function.

7.3. Theory 75

Specification 1 (init)

Type: N*° — (NP — T) — T°.
Input variables: i : N+, x : (NP — T)
Pre-conditions: D > 0

Output: init(7)(x) = (7, k)

Notice that the init constructor can be used to build “flat” tensors of scalars,
for example if T is a numerical type, but also to build “nested” tensors of tensors.
Indeed if x : (NP — T°) then init(i)(x) € T°°. We use this feature in our HTL
programming of neural-net layers like convolution.

The shape operator returns the shape of a given tensor.

Specification 2 (shape)

Type: T° — N*P where D > 0 is the number of dimensions.
Input variables: t : T°
Pre-conditions: Always defined

Output: shape(t) = p(f)

The content operator returns a generalization of the content function « of a
given tensor?. Given (as second argument, after the tensor) an empty index vec-
tor, it returns the input tensor itself. Given an index vector as long as the number
of dimensions of the input vector, it returns a singleton tensor. For intermediate
lengths of index vector, it returns a sub-tensor with an intermediate number of
dimensions. In what follows IN* denotes vectors of natural numbers (not to be
confused with strictly positive naturals).

Specification 3 (content)

Type: T® — IN* — T°.
Input variables: t : T°,7 = [rg,...,rg—1] : IN*
Pre-conditions: p(t) = [po,...,pp-1], K< D, Vd <K.r; < pg
Output: content(t)(7) = init[ok, ..., 0p_1](AL k(t)(F- 1))

Here (7 - i) denotes index-vector concatenation.

Example 10 : Function content is not as usual as the others so we provide a
small example here.

2It is intended to be implemented lazily so as to avoid constant copying and serialization of
the tensor content values.

76 Chapter 7. Tensor Programming with BSP

012

letat t=1(23],«(i,j) —i+j) =
et a tensor (12,3],x(i,j) = i+7) [123

content(t)([1]) = ([3],x(j) = 1+j) = [123]

The tensor destructor to_scalar extracts the scalar content of a singleton
tensor.

Specification 4 (to_scalar)

Type: T° — T.
Input variables: t : T°
Pre-conditions: p(t) = [1,1,...,1]
Output: to_scalar(t) = x(t)[0,0,...,0]

The map operator applies a scalar function to every element of a given tensor.

Specification 5 (map)

Type: (T1 — To) = Ty = Ty
Input variables: f : (T} — Tp),t: Ty
Pre-conditions: Always defined

Output: map(f)(t) = (p(t), (AL f(x(t)(7))))

The reduce operator takes a binary operator on scalars, assumed to be as-
sociative and commutative (like addition, multiplication, maximum, minimum)
and applies it to reduce a given tensor to a scalar. To ensure those properties,
binary operators used in reduce are provided by the language, no defined by the
user.

Specification 6 (reduce)

Type: (T - T —T) - T° — T.
Input variables: ® : (T — T — T),t: T°

. t is not empty i.e. shape(t) does not contain o.
Pre-conditions: _ o)
@ is associative and commutative.

Output: reduce(®d)(t) = Y7 " K (1) (7)

7.4. Abstract data types and expressiveness 77

74 ABSTRACT DATA TYPES AND EXPRESSIVENESS

To experiment with the core language elements we have first built OCaml
abstract types for the primitives. The signature for vectors is as follows and is

coherent with the denotational semantics given in subsection 7.3.2.

module Vec
sig
type « t
val init : Natplus.t -> (Nat.t -> «a) > a t
val length : o« t —-> Natplus.t
val get : « £t —> Nat.t —> «

val map : (« > B) > a t > ft
val reduce : (¢ > a —> a) > a t —> «
end

Constructor Vec.init builds a vector from its size and content function.
Destructors Vec. length, Vec.get and Vec. reduce return length, element at
a given position and reduction with a binary-associative operation respectively.
Transformer Vec.map applies a unary function to every element.

The signature for tensors in this proof-of-concept model is as follows.

module Tensor:

sig
type &« t
val init : int wvector —> (int wvector > a) —> a t

val shape : « t —> int vector
val content : &« t —-> int vector —> « t

val to scalar : &« t —> «

val map : (¢ > B) > a t > f t
val reduce : (&« > a —> &) > a t —> «
end

Constructor Tensor.init builds a vector from its shape and content function
Destructors Tensor.shape, Tensor.to_scalar and Tensor.reduce return
shape vector, scalar value of a singleton vector and reduction with a binary
associative-commutative operation respectively.

Transformers Tensor.content and Tensor.map return the content function

(x() of 7.3.2) and apply a unary function to every element respectively.

78 Chapter 7. Tensor Programming with BSP

To demonstrate the core of HTL programming and the expressive power of its
primitives, we then wrote very short OCaml programs using only integer/float
operations, trivial integer-vector operations for shapes and indices, non-recursive
function definitions and the vector/tensor primitives. In this manner the follow-

ing mini-library has been built.

val tensor_scalar_content

& Tensor.t -> int vector -> «
val tensor_map2 : (¢ —> B —>) —>

x Tensor.t -> f§ Tensor.t -> 7 Tensor.t
val float_tensor_addition

float Tensor.t —-> float Tensor.t -> float Tensor.t
val float_tensor_dot_product

float Tensor.t -> float Tensor.t -> float
val constant_tensor : int vector —> a« —> & Tensor.t
val zero_float_tensor : int wvector -> float Tensor.t

val one_float_tensor : int wvector -> float Tensor.t

val indexingld: (int -> &) —-> int wvector > «
val indexing2d: (int+xint -> «) —-> int vector > «
val indexing3d: (intxintxint -> &) -> int vector -> «

val tensor_mapi

(int vector -> « ->) -> & Tensor.t -> P Tensor.t

val nil : float Tensor.t
val nats_less_than : int -> int Tensor.t
val nats_up_to : int -> int Tensor.t

We have also written short and simple programs that implement the four
types of CIFAR10 [31, 32] neural-net layers, namely: convolution, relu-activation,
pooling and fully-connected output layer. The extreme simplicity of those pro-
grams is a great advantage of HTL . For example 2-dimensional convolution is

written as follows:

let sub_image_at2d =
fun image (i_image, Jj_image) filter_shape2d ->
Tensor.map Tensor.to_scalar
(Tensor.init filter_shape2d
(fun index -> match index with
| [i_filter; j_filter] —->

Tensor.content image

7.5. Type-shape system 79

[i_image + i_filter; j_image + Jj_filter]

let convolution2d =
fun image filter_result_shape2d filter2d ->
Tensor.init
filter_result_shape2d
(indexing2d
(fun (i, 3J) —-> (% RESULT (i, 73) =*)
float_tensor_dot_product
filter2d (sub_image_at2d image (i, 3))

In this operation, the input (image) 2D-tensor is turned into a tensor of small
tensors that represent a pixel’s neighborhood. One then maps a tensor-reduction
operation on the outer tensor so as to sum the neighborhood values. In BSML,
such a nested parallel operation is prohibited to avoid unwanted implicit com-
munications. But HTL having static types and shapes, it can be analyzed stat-
ically to compile such an operation into a more efficient implementation e.g.
reduced communications or even reduced arithmetic operations as in Winograd-
convolution. We will return to those neural net layer examples with the actual
concrete HTL language. The above constructions are not intended as final source
language, precisely to avoid the excessive expressive power of a full host lan-
guage like OCaml.

7.5 TYPE-SHAPE SYSTEM

Our HTL language has static strong (monomorphic) typing and we can take
decorate its types with vector lengths and tensor shapes to produce an inference
system for static analysis.

Type vector(n) is an n-sized vector of integer. Type a tensor(p) is a p-shaped
tensor of w. A shape p has type vector(n).

p : vector(n) f :vector(n) — a
init(p)(f) : & tensor(p)

8o Chapter 7. Tensor Programming with BSP

t:a tensor(p) p:vector(n)
shape(t) = p : vector(n)

Remember that the content function has been generalized to produce a
sub-tensor of fewer dimensions. For example it can extract lines form a two-

dimensional tensor, singletons, lines or planes from a three-dimensional one etc.

t:wa tensor(p) p:vector(n) :vector(d)
p' ivector(n—d) Vi<n-—d. p'[i] =pli+d]
content(t)(t) : a tensor(p’)

f:a—a' t:atensor(p)
map(f)(t) : &’ tensor(p)

(+):a —a —a t:uatensor(n)
reduce((+))(f) : «

t:wa tensor(p) p:vector(n) Vi<mn.pli=1
to_scalar(t) : a

With sufficient restrictions on the source language, this inference system can
be applied for static analysis so that every tensor shape is known before execu-
tion time. Consequently, language of vectors operations is intended to be weak.

This is an enormous advantage for code generation on complex systems like

GPUs or tensor accelerators.

2.6 HTL

This section is an informal but complete presentation of the HTL concrete
syntax and semantics. Its types and primitives are exactly those presented in
the above theory, with a minor change for singleton-to-scalar conversion that
appears as a special case of casting i.e. type conversion.

We show source code and some output evaluations, assuming the verified /in-
ferred types will be obvious to the reader.

Functions are non-recursive and there are no explicit loops or iterators, all
variables being non-mutable (single-assignment). Vectors and tensors are built
by a comprehension syntax, whose semantics is the corresponding init con-
structor. For example

7.6. HTL 81

function zeroVector (int n) return
vector i < n —> 0;

def zeroVectorl2 = zeroVector (1l2);

evaluates to

zeroVector —> (function)
zeroVectorl2 -> wvector[0,0,0,0,0,0,0,0,0,0,0,0]

Note that type constructor keywords “vector” and “tensor” bind index
variables (in the same way that “fun i -> ...” binds i in OCaml).

Here is a function to build a two-dimensional tensor.

function identityMatrix (int n) return

tensor (i, j) < (n,n) —-> if i=7 then 1.0 else 0.0;

Conditionals are expressions, not statements.

def mySign =
if x < 0.0 then (-1) else if x=0.0 then 0 else 1;

Here is an example of a singleton vector and its transformation into a scalar.

def vSingletonb5 = vector i < 1 -> 5 ;

/+ Casting vectors to scalars,
corresponds to Vector.to_scalar =/
def fiveIntScalar = (int)vSingletonb5;
def fiveFloatScalar = (float) (int)vSingletonb5;

with evaluation to

vSingleton5 —-> wvector[5]
fiveIntScalar —> 5

fiveFloatScalar —> 5.0

and here an example of max-reduction, then a sum-of-squares function:

function vectorMax(int|[] v) return

reduce v with max;

def vInts = wvector i<5 -> i;

def vecMaxvInts = vectorMax(vInts);

82 Chapter 7. Tensor Programming with BSP

function intToFloat (int i) return (float) i;

def vFloats = map intToFloat on vInts;

function squareFloat (float x) return x x x;

function sumOfSquares (float|[] v) return

reduce (map squareFloat on v) with + ;

def sumOfSquaresvInts = sumOfSquares (vFloats) ;

with evaluation:

vectorMax —> (function)

vIints -> wvector[0,1,2,3,4]
vecMaxvInts —> 4

intToFloat —> (function)

vFloats -> vector[0.0,1.0,2.0,3.0,4.0]
squareFloat —-> (function)

sumOfSquares —-> (function)

sumOfSquaresvInts —> 30.

The following is a tensor example inspired by the CIFAR convolution neural
net

def cifarTensor =
tensor (i, j,k) < (32,32,3) —> (float) (it+j+k) ;

function tensorSum(float|[[]] t) return
(reduce t with +) ;

def sumOfFloats = tensorSum(cifarTensor);

its evaluation:

cifarTensor —> tensor[[[0.0,1.0,2.0],
[1.0,2.0,3.0],
[2.0,3.0,4.0],

[61.,62.,63.],

7.6. HTL 83

[62.,63.,64.1]]
tensorSum —-> (function)
sumOfFloats —> 98304.

then an example of a tensor of tensors:

def t123 = tensor i<3 —-> (float) 1i;
def tOft tensor i<32 -> t123;
def flattenedt = map tensorSum on tOft ;

function flattenTensor (float|[[]][[]] t) return

map tensorSum on t;

def flattenedt?2 = flattenTensor (tOft);

def lengthFlattenedT2 = shape flattenedt2 ;

with evaluation:

t123 —> tensor[0.0,1.0,2.0]
tOft —> tensor]|

tensor[(0.0,1.0,2.0], ... ,tensor[0.0,1.0,2.0]]
flattenedt -> tensor[(3.0,3.0,3.0,3.0,3.0, ... ,3.0]
flattenTensor —> (function)
flattenedt2 -> tensor(3.0,3.0,3.0,3.0,3.0, ... ,3.0]

lengthFlattenedT2 —-> wvector|[32]

and finally a transpose function (which is therefore not a primitive) that illus-
trates functions with local program blocs, in this case a one-statement block used

to avoid multiple computation of a value:

/+* The inside block prevents computing
(shape t) twice. The cast operation in

(float)t[j][i] is a to_scalar operation. =/

function transpose2D (float [[]] t)
{ def shapeT = shape t;}
return tensor (i, j) < (shapeT[l], shapeT[0]) —>
(float) (t[3j1[11);

def floatAsymmetric =

84 Chapter 7. Tensor Programming with BSP

tensor (i, j) < (8,7) —> (float)i;

def transposeTest = transpose2D (floatAsymmetric);

Its evaluation is the following:

transpose2D —> (function)

floatAsymmetric —> tensor|

0.0,0.0,0.0,0.0,0.0,0.0,0
1.0,1.0,1.0,1.0,1.0,1.0,1
2.0,2.0,2.0,2.0,2.0,2.0,2
3.0,3.0,3.0,3.0,3.0,3.0,3
4.0,4.0,4.0,4.0,4.0,4.0,4
5
6
7

~

~

~

~

.0,5.0,5.0,5.0,5.0,5.0,5
.0,6.0,6.0,6.0,6.0,6.0,6
.0,7.0,7.0,7.0,7.0,7.0,7

~

SO O O O O o o o
~

N

transposeTest —> tensor|
0.0,1.0,2.0,3.0,4.0,5.0,6.0
.0,1.0,2.0,3.0,4.0,5.0,6.0
.0,1.0,2.0,3.0,4.0,5.0,6.0
.0,1.0,2.0,3.0,4.0,5.0,6.0,7

0

0

0

~

~

.0,1.0,2.0,3.0,4.0,5.0,6
.0,1.0,2.0,3.0,4.0,5.0,6
.0,1.0,2.0,3.0,4.0,5.0,6

~

O O O O o o o
~

7.7. Programming neural nets

85

7.7 PROGRAMMING NEURAL NETS

Layer 3

Layer 2

Layer 1

argmax node[1]

sum nodes|[2]

perceptron
neurons[30] (2
groups of 15
neurons)
weights[30 x 51]

inputs[51]

Figure 7.1 — 3-Layers Binary Neural Network Architecture

This section shows a concrete use-case of HTL issued in [26]. The problem is a

two-class binary neural network for handwritten digits. The neural network goal

is to distinguish hand-written o from other digits. Input images of handwritten

digits are given in a compressed form of 51 bits. This problem is tackled with

a binary neural network architecture of three layers (in addition to the input)

represented in Figure 7.1.

Layer 1: 30 perceptron nodes, each connected to the 51 inputs.

Layer 2: 2 sum nodes, each aggregating results of 15 perceptron nodes.

Layer 3: 1 argmax node, selects the sum node with the largest output.

include "myLib.ht";

/+* The Binary Neural Network (Forward-Pass only)

/*— Hyper—Parameters of the Network —x/

def sizePerceptronLayer = 30;

def sizeSumLayer = 2;

/*— Perceptron Layer —-x/

function perceptronlayer (int[[]] perceptronWeights,

* %/

86 Chapter 7. Tensor Programming with BSP

int[[]] input) {
function signOf (int a) return
if a > 0 then 1 else -1; }
return map signOf on
(tProduct2D (input, perceptronWeights));

/*— Sum Layer —=*/
function sumlLayer (int|[[]] input) {
def nNeuronsPerSum =
(sizePerceptronlayer div sizeSumlayer) ;
function tensorSum(int[[]] t) return
(int) (reduce t with +);
}
return tensor i < sizeSumLayer —> (
tensorSum (
tensor j < nNeuronsPerSum —>

(int) (input [0] [nNeuronsPerSum*xi + J]))

) ;

/*— Argmax Layer —x/
function argmax(int[[]] t) {
def max = reduce t with max;
def maxIds = tensor i < (shape t)[0] —>
if(((int)t[i]) == max) then i else sizeSumlLayer;
}

return reduce maxIds with min;

/*— Auxiliary Random Generator -—x/
function randomSign () {
function randomBit () return
(int) random 2.0; }

return 1 - (2 * randomBit ());

/*— Get input -=*/
def sizeInput = 51;
def input =

tensor (i, j) < (1,sizeInput) —-> randomSign () ;

7.8. Parallel code generation and costs 87

def output =
argmax (sumLayer (perceptronLayer (
tensor (i, j) < (sizeInput,sizePerceptronlLayer) ->
randomSign (),

input)));

7.8 PARALLEL CODE GENERATION AND COSTS

The current implementation for HTL is an interpreter-compiler written in
about 5000 lines of OCaml. It includes parser, type analyzer (not including shape
analysis), and sequential evaluation. Under development is a static shape analy-
sis, parallel code generator for BSML, a CUDA code generator. For the large fam-
ily of neural-net programs whose tensor shapes are known statically, we show
below the design of a BSP cost model (introduced in subsection 2.3.2) that esti-
mates parallel execution time and memory usage for multicore and multinode.
It can adapt to GPU targets by using a multi-level variant like [39] or [1].

We present here the parallel implementation of the primitives with their cost
assuming a BSP implementation and tensors split along their first dimension.
For example, a tensor ¢ with shape p(t) = [12,36,3] split in p = 3 processors
would result in (g, t1, t) where p(ty) = p(t1) = p(t2) = [3,36, 3]. To ease under-
standing, we also assume that first dimension size is a multiple of p and thus
tensors are evenly distributed (except when the tensor is a singleton). The shape

[no,...,n,_1] distributed (as previously shown) is

split([no,...,np,l]) = ([no/p,n1,...,np_1l,..., [no/p,nl,...,np,lb

and sum of the first dimension size of a vector of tensors t* (notation [x] =

{0,...,x—1})is

The number of elements in a tensors of shape 7 is

(i) = n([no, .., np 1) = n,

88 Chapter 7. Tensor Programming with BSP

and the cost of evaluating program function f is an estimate of its BSP evaluation
time written cost(f) and defined below on the language primitives. Character-
istics of the BSP machine (reminder of subsection 2.3.2) of p processors are the
global synchronization time / and the time g for collectively delivering at most
one word.

Specification 7 (init")
Type: N*° — (NP — T) — T

Input variables: i : N+, x : (NP — T)

Pre-conditions: D > 0

init™ (i) (k) = (to, ..., tp 1)

Output:
uipd {where Vit; € split(i). t; = init(i;)(x)

init™ (7)(x) splits the shape as shown previously and runs its sequential im-
plementation for each processor with the local shape. Function « is applied once
per element. Having 71(#) elements evenly distributed in p processors, the cost

of init is thus 7t(7i)/p applications of .

_ cost(x) - 7t(i)

cost(init" (#)(x)) ,

Specification 8 (shape™)

par
Type: T — <N+D>

oPar

Input variables:] : T
Pre-conditions: True
[shape™ (t7) = (po, -, pp 1)
where (p1 = -+ = pp-1),
vi € [pl. (pi), = o (tlP),
| Vi€ lplde{1...D—1}. (p), = (shape(t),

Output:

shape” (t[P]) first runs its sequential implementation locally then sends the first
dimension size of local tensor to others, to be added in order to reconstruct the
shape of the global tensor. Assuming that each p tensor computes its shape in
constant time, each processor sends its first dimension to all others with cost gp.
After a synchronization costing I, each processor adds p values to compute the

first dimension.

7.8. Parallel code generation and costs 89

cost(shape” (t)) = g(p+1)+1

Specification 9 (content™)

par

Type: T°" — N* — T°

opar

Input variables: AL [ro,...,rK_l] . IN*

shape” (tIP)) = plP], Vi € [p]. o' = [p}, ..., 0} _4]

Pre-conditions:)
K <D, Vd<K.rd<p;

[content™ (tP))(7) = (t),...,t,_,) where

let k = min{k | o(tH) > 10} —1

and 0 = content ([r® — c(tK) — 1,7, ... 7k]) (#F)
| in(ty .oty _g) = init" (0(0))(x(9))

Output:

content’ (t)(7) starts by running sequential content on the processor own-
ing the tensor slice designated by the (second) index argument and distributes
the among the processors. Note p(t) = [ng,...,np_1] and k is the length of 7.
The number of elements of the resulting tensor is 7t([ng, ..., np_1]). Those el-
ements are distributed over p processors. The cost to send to all others is gp
while each communication carry m/p elements. After communication, a bar-

rier costing [is executed for the former to be effective. In total, the cost is
gp(r([ng,...,np-1]))/p+1.

cost(content” (t)(F)) = g-m([ng,...,np_1]) +1

Specification 10 (to_scalar’)

par

Type: T — T

Input variables: t[P] : T°*

Pre-conditions: shape™ (/")) = plP! where p® = [1,1,...,1]
Output: to_scalar’ (tP)) = (a,...,a)
where a = to_scalar(t°)

to_scalar’ (t) of a distributed tensor extract the value in t found at processor o
which is sent to all other processors. Communication cost is gp. Barrier cost is !

for its result to be available.

90 Chapter 7. Tensor Programming with BSP

cost(to_scalar’ (t)) =gp+1

Specification 11 (map’)

Type: (Ty — To) — T — T3
Input variables: f : (T; — T»), tP : Tfpar
Pre-conditions: Always defined

mappar(f)(<t0/' . '/tp71>) = <t6/' : "t;yfl>

Output: { .
where Vi € [p]. t; = map(f)(t;)

map’ (f)(t) applies function f to all local elements. Total number of elements is
nt(p(t)) distributed in p processors. No barriers are needed because no commu-

nications are performed.

COSi,‘(mappar (f)(t)) = cost(f) 'Pﬂ(P<t))

Specification 12 (reduce’)

par

Type: (T =T = T) - T =T
opar

Input variables: @ : (T — T — T),tPl: T
t is not empty

Pre-conditions: i.e. Vp; € shape”™ (tP)). p; does not contain o.
@ is associative and commutative.
reduce” (®)(t) = (a,...,a)
Output: o
where a =3 ;1 reduce(D)(t)

reduce’ (@)(t) reduces the local tensors, sends local reduced values to all pro-
cessors which then reduce values received with their own. Operator @ is applied
to local elements to reduce locally and is assumed to have a constant processing
time. Total number of elements is 7(p(f)) distributed in p processors. Local re-
duction results are sent from all to all, costing gp. A barrier costing / is performed
for communications to be effective. The p values received are then reduced. In
total, the costis 7w (p(t))/p+gp+1+ p.

cost(reduce” (@)(t)) = @ +e(p+1)+1

Cost will be integrated to static analysis in order to perform transforma-

tions of tensors aiming at minimizing the HTL program cost. An example of

7.9. Conclusions 91

such transformation would be the following. If the first tensor dimension size is
smaller than p but a dimension exist for which its size is greatly higher than p,
then the tensor could be statically transposed before being distributed. Opera-
tions performed on this tensor will also need to be transformed accordingly.
Correctness of the parallel implementation can be based on the following
formal property of our primitives. Let cat : T°" — T° be inverse of tensor
distribution and let proj : T"~ — T be the function extracting a replicated value

to a scalar.

content(7) o cat

~—"

par ,_,
cat o content (7

cat omap” (f) = map(f)ocat
projo reduce’ (@) = reduce(®) o cat
projoto_scalar = to_scalar ocat
splii‘_1 o shape” = shape o cat
. . par P
cat o init = init

Moreover, in the absence of barrier-elimination (an optimization called “layer-

fusion” in the context of neural nets) we have VF;, F, : primitives.

cost(Fy; Fy) = cost(Fy) + cost(F)

7.9 CONCLUSIONS

We have described a minimal but sufficient DSL for programming the neural
nets as declarative parallel programs over tensors. Unlike MATLAB it has a very
small base to allow for multiple code-generation and optimization techniques to
be applied. Unlike DIESEL [13] it has a clear and declarative semantics. Unlike
RELAY [54] it has a simple design (no polymorphism or dependent types) and
very small set of parallel primitives to clarify implementation and parallel cost

modeling.

CoNCLUSION AND FUTURE WORKS

CONTENTS
8.1 ALLROADSLEADTOBSP 91
811 BSPAutomata 91
8.1.2 BSP tensors computation oL 92
8.2 ROADS CONTINUEINBSP 92
8.2.1 BSP automata future oL 92
8.2.2 HTLfordeeplearning 93

8.1 ALL ROADS LEAD TO BSP

We have shown two different set of techniques for automatic generation of
BSP programs.

8.1.1 BSP Automata
a) BSP automata from BSP regular expressions

BSP regular expressions may be seen as a declarative language to represent a
set of words. BSP Automata are a machine solving the decision problem of the
belonging to the word set represented by a BSP regular expression. This trans-
formation was thus a compilation from a declarative language to a machine
checking the belonging of a word to the language represented.

b) Determinization of BSP automata

When matching time is what matters the most (and no special hardware is in-

volved') non-deterministic automata have to give way to deterministic automata.

Isee section 3.2.3.a)

93

94 Chapter 8. Conclusion and Future Works

For this reason, we treat non-deterministic BSP automata as an abstract machine
whereas deterministic BSP Automata are the concrete BSP code responsible for
matching BSP words. Determinization may thus also be seen as a compilation,

from an abstract machine to concrete BSP code.

¢) BSP regular expression matching

The tool-chain transformation from regular expression to BSP regular expression
to non-deterministic BSP automata to deterministic BSP automata for parallel
regular expression matching shows better matching time compared to existing
approaches which keep the sequential DFA and speculate on the starting local
state. However, the BSPA construction takes every possible distribution of the
input into account which indeed removes the need to speculate (over the first
local state as in usual approaches) but also increase greatly the automata size
which in turn increase time and space required by determinization, leading to
a gargantuan BSPA for high number of processors. Our approach still remains
very efficient for small numbers of processors which, as should be recalled, is
the majority of parallel computers, in particular those available for the general
public.

This approach was a compilation from a sequential program, the regular
expression to a BSP program, the BSP Automata.

8.1.2 BSP tensors computation

We introduced HTL, a minimal domain specific language (DSL) for tensor com-
putation with only 6 tensor primitives. Those primitives include the constructor
init, the transformers map and content (which returns a smaller tensor) and
the destructors to_scalar, shape and reduce. These primitives were defined
for a sequential and BSP implementation for which the BSP cost was designed.
Its relevance was shown through a real world example. Its type system was in-
troduced including tensor shape analysis which ought to be statically deduced

in order to take the best decisions in terms of data distribution, similarly to [52].

8.2. Roads continue in BSP 95

8.2 ROADS CONTINUE IN BSP

8.2.1 BSP automata future

Next steps of parallel regular expression matching include first the optimization
of BSPA implementation to reduce its size thereby decreasing further its match-
ing time. Afterwards, extended regular expressions will be considered. Certifica-
tion of the whole tool chain would be a great asset for the BSP automata theory.
The proof started in Appendix A is the first step toward this goal. It would first
require making conjecture 1 into a theorem by completing the proof for all cases.
Thereafter would come the language preservation of determinization as well as
the determinism of the determinization output with the lack of e-transition and
the uniqueness of output per local and global transitions. Concerning the paral-
lelization of RE to BSPRE, the BSPRE language would have to be equal to the RE
distributed language, for a block distribution. The latter transformation would
also benefit from a proof that the BSPRE produced is minimal and a precise
quantification or an upper approximation of the size of the BSPRE output.

It is the author’s belief that BSPA applications have yet to be unraveled. The
application of parallel regular expression matching had the merit to use all our
transformations and especially, to be widely known. However, the first trans-
formations from regular expression to BSP regular expression (BSPRE) creates
BSPA too large to be scalable and the BSPRE is merely a disjunction of regular
expression vector. It does not make use of neither Kleene closure nor concatena-
tion (i.e. synchronization). Although we lean on this fact to justify that the cases
covered by our conjecture 1 proof in Appendix A are sufficient. An application
requiring the user to design the BSPRE himself would prevent the explosion due
to the former transformation and make full use of BSPRE expressiveness. We
still hope for the advent of an application putting BSP automata full power to

use.

8.2.2 HTL for deep learning

We have only demonstrated that HTL is a productive and effective language de-
sign for programming neural-net inference i.e. the so-called forward, real-time
computation. But neural net programs are useless without training to obtain

high-quality inference from an optimization of their parameters. To this end we

96 Chapter 8. Conclusion and Future Works

will define a set of differentiation equations for tensor programs. Such a defi-
nition allows the automatic computation of a program’s (inference quality loss
function) derivative w.r.t. its weight parameters. The small number of primitives
with simple mathematical definitions in HTL should make this process both safe

and efficient.

It is also planned to increase hardware targets of HTL compilation to GPUs
(Graphics processing units) for which number of approaches are available. We
could generate directly CUDA code, the C API for programming Nvidia GPUs
or the less specific OpenCL, an open standard for programming GPUs in C++.
This is the low level approach. The high level approach would be to rely on
SPOC [4], an OCaml framework targeting both CUDA and OpenCL. Model-
based approaches would also be relevant such as BSP with BSPGP [25], a C
framework consisting of a low amount of primitives targeting CUDA or multi-
BSP with multi-ML [1], an extension of BSML for multi-BSP or SGL [39], a
scatter-gather based language for heterogeneous architectures. Eventually, tar-
geting the recent TPUs [29] (Tensor processing units) ought to be the logical
sequel for which few programming languages are available yet.

Appendix

97

PROOFS

CONTENTS
A.1 GLUSHKOV'S PROPERTIES« o v vttt it et o 97
Axax Null ..o 97
A2 First . . oL 102
Ax3 Last 106
A1.4 Follow 110
A.2 LANGUAGE PRESERVATION OF GLUSHKOV 115
A.3 BSPA GENERATION PROOF« v vttt it oo e e e 149

We prove here that the transformation From BSP Regular Expression to BSP
Automata defined in Chapter 4 preserves the language in section A.3. This trans-
formation relies on Glushkov’s algorithm which thus ought to be proven before-
hand in section A.2. The first step of Glushkov’s algorithm is the computation of
four sets on which 4 properties are written. This appendix starts by the proof of
these properties in section A.1. We also give our writing conventions in Table A.1
to help the reader navigate through the proof.

A.1 GLUSHKOV’'S PROPERTIES

A.1.1 Null

def 17.1 Null' : (2*x X)re — {{e}, D}

Null (@) = @ (1)
Null' (€) = {e} (2)
Null' (x) = Q@ (3)
Null(F+G) = Null(F)UNull'(G) @)
Null(F-G) = Null(F)nNull'(G) (5)
Null (F') = {e} (6)

99

100 Appendix A. Proofs
Symbols | Explanation Type
a,u,v symbol of a regular expression M
sequence of symbols Py
N or sequence of localised symbols (2*x X)*
X,y localised symbols (2*x X)
EFGR regular expressions Tre
or BSP regular expressions (X, p) bspre
E,F,G,R | localization of a regular expression (2*x X)re)
F°,G°, R° | BSPRE with vectors annotated (X, p) bspre®
A Automaton X nfa
or BSP autoamton (X, p) bspa
. bit sequence 2*
or just one bit 2
t unique identifier of vectors IN
Regular language P(Z¥)
. BSP language P(((Z)P)")
Language of a R Yre — P(X*)
Language of a BSPRE (Z, p) bspre — P (((Z*)P)")
Yisn alphabet including annotated semicolons | X U .7
Sidsn transitions labeled with alphabet X4, Qx (ZUY)—Q

Table A.1 — Writing conventions

A.1. Glushkov’s properties 101

prop 17.1 (Null) :

Null(E) = {{e} if e € L(E)
@ otherwise
Proof We prove Null = Null’ by induction on E. We write IH for induction
hypothesis.
Case (1) Case (2) Case (3)
L(@)={} L(e) = {e} L(x) = {x} def. Lge
= € ¢ L(O) = e € L(e) — € ¢ L(x)

= Null(@) =@ | = Null(e) =€ | = Null(x) =0

and Null' () = @ | and Null'(¢) = ¢ | and Null'(x) = @ | def. Null'

Case (4)

{e} if € € L(F+G)

Null(F+G) = [prop. Null |

@ otherwise

{e} ife € (L(F)UL(G))

@ otherwise

[def. Lie |

{eVif (e € L(F)) V (¢ € L(T))

@ otherwise

_ {{e} if (Null(F) = {e}) v (Null(G) = {e})

@ otherwise

I
/—/H/—’H/—’H

[prop. Null |

All possible cases are displayed in the following table.

102 Appendix A. Proofs

Null(F) |Null(G)|Null(F+G) | Null(F) U Null(G)
{e} | {e} {e} {e}
{e} % {e} {e}
% {e} {e} {e}
%) %) %) %)

Which is equivalent to

Null(F+G) = Null(F) U Null(G)

= Null'(F) UNull'(G) [IH]

= Null' (F+G) [def. Null']
Case (5)
- — {e}ife e L(F-G)

Null(F - G) [prop. Null |
@ otherwise
elifee(L(G
fe) ©) ot Lo
@ otherwise
{e} if (e € L(F)) A (e € L(G))
@ otherwise

}if (N ll = A (Null
(e} it (Nul(F) = {e}) A (NI @) = {e})
@ otherwise
Likewise

Null(F)|Null(G) |Null(F - G)||Null(F) N Null(G)
© | o | (o (e}
e | o 2 o
o | {e 2 %
%) %) %) @

A.1. Glushkov’s properties 103

<= Null(F-G) = Null(F) N Null(G)

= Null'(F) "Null'(G) [IH |

— Null'(F-G) [def. Null']
Case (6)
Null(F') = if e € L(F") then {e} else @ [prop. Null |
= ifec (Q)L(Fi)) then {e} else @ | def . L |
Null(F*) = {e} = Null' (F") [def. F']

104

Appendix A. Proofs

LetP = (2*x X)

A.1.2 First

def 17.2 First' : (2*x Z)re — P(2*x X)

First' (@) = @ (1)

First'(¢) %) 2)

First' (x) = {x} 3)

First'(F+G) = First'(F) UFirst' (G) (4)

First'(F-G) = First'(F) U (5)
Null(F) - First' (G)

First' (F') = First'(F) (6)

prop 17.2 (First) :

First(E) = {x €(2'xX) | Fwe (2"x L) rxw € L(F)}

Proof ~ We prove First = First' by induction on E.

Case (1)

First(Q)

={y I Jw,yw € L(2)}
={y I Jw,yw € 0}
=Q

= First' (@)

Case (2)

First(e)

—{y | Fw,yw e L(e)}
—{y | Fo,yw e {}}
=0 [e¢P=y#e]

= First'(¢)

Case (3)

First(x)

= {y | 3w,yw € L(x)}
= {y | 3w,yw € {x}}
={x} [w=e]

= First'(x)

prop. First

def. Lge

def . First’

A.1. Glushkov’s properties 105

Case (4)
First(F+G) = {x | Fw, xw € L(f+é)} [prop. First |
- {x | Jw, xw € (L(F) U L(E))} [def. L |
= {x | Jw, xw € L(f)} u {x | Jw, xw € L(C)}
= First(F) U First(G) [prop. First |
= First'(F) U First'(G) [IH]
First(F+G) = First'(F+G) [def. First' |
Case (5)
First(F - G)
= {x | Jw, xw € L(f-@)} [prop. First |
= {x | Jw, xw € (L(F) - L(E))} [def. Lig |

= {x | Jw, xw € {wlwz | w1 € L(F),w; € L(E)}} [def. 1L,]

Two cases are distinguished according to whether ¢ belong to L(F).

o e ¢ L(F)
First(F - G)
= {x |3, xw' € {wi | wr € L(F)}} [eeéL(F) z Lw;;o]
_ {x | 3w, x| € L(?)} [wy = xw)]
— First(F) [prop. First |
o € € L(F)

First, we consider the following subcase

> L(F) = {e}

106 Appendix A. Proofs

First(F - G)
= {x | Jw, xw € {ewz |e € L(F

)ws € LG) | | [wr =e]
= {x|3w,xw€ {wzlwzeL(E)}}

= {x | Jwh, xw)y € L(E)} [wy = xw) |
= First(G) [prop. First |
> € € L(F)
First(F - G)

{xaw,xwe([ews | e e L(F)w zeL(C)C};)}[L(?){e}}

U {wlwz | wy € L(F)

wy €
({ | Jw, xw € w2|w26LC))

x| o, xwe w1|w1€L(?

= First(G) U First(F) [from cases L f {e} and e ¢ L(F) |

Therefore,
First(E-G) = {Null(f) =0 = First(f) B

Null(F) = {e} = First(F) UFirst(G)
| Null(F) =@ = First(F) UFirst(G) - @ [First(G) - @ =@ |
| Null(F) = {e} = First(F) UFirst(G) - {e} [First(G) - {€} = First(G)]
_ | Null(F) =@ = First(F) UFirst(G) - Null(F) [Null(F) = Q|
| Null(F) = {e} => First(F) UFirst(G) - Null(F) [Null(F) = {e}]
= First(F) U First(G) - Null(F)
= First'(F) U First'(G) - Null(F) [IH]
= First'(F - G) [def. First' |

Case (6)

prop 40.1 (First of iteration) : Let P(i) the property First(E') = First(F)

Proof We prove that Vi > 0, P(i) holds.

A.1. Glushkov’s properties 107

o First(F') = First(F) [Base case |

o First(F = {x | Jw, xw € L(Fl)} [prop. First |
— {x | Jw, xw € L(Pl 1.?)} [def. F']
:{x\ Jw, waL(F 1)-L(?)} [def. Lie]
:Frst(F)UFzrst() - Null() [prf. (5)]
= First(F) U First(F) - Null(F) [1H]

. Null(F Y = {e¥ = First(F) U First(F) = First(T
ity _ | NOIE) = 16} (F) U Firs(F) = First(F)

Null(Fi_)= @ = First(F)U®D = First(F)
First(F~") = First(F)
U
Hence,
First(F {x | Jw, xw € UL F) } [prop. First |
= { | Jw, xw € L(FO)} U {x | Jw, xw € QL(Fi)}
= { | Jw, xw € {e}} Ug{x | Jw, xw € L(Fi)}
=Qu UFlrst() [xw ¢ {e} and prop. First |
— First(F) [Vi > 0, First(F') = First(F) |
First(F") = First'(F) [IH]

108

Appendix A. Proofs

A.1.3 Last

def 17.3 Last’ : (2*x Z)re — P(2* X X)

Last' (©®) = @
Last'(¢) =0
Last'(x) = {x}
Last' (F+G) = Last'(F)U
Last'(F-G) = Last'(G) U

prop 17.3 (Last) :

= Last'

Null(G) - Last'(F)
(F)

U Last'(G)

Last(E) = {x €(2*x %) | Fwe (2°x X)* rwx € L(E)}

Proof ~ We prove Last

Case (1)

Last(Q)

— {y | wy € L()}
—{y lwye{})
=@

= Last(QD)
Case (4)

Last(F+G) =

= Last’ by induction on E.

Case (2) Case (3)

Last(e) Last(x)

={y lwy eL(e)} ={y l wy € L(x)}
={y | wy € {e}} ={y I wy € {x}}

—0 [e¢P=y#te]|l={x} [w=¢]
= Last(e) = Last(x)

x | 3w, wx € L(F+§)}

| Jw, wx € L(f)} U {x | Jw, wx € L(E)}

{
{x | Jw, wx € (L(F) U L(C))}
= {x
L

[1H]

prop. Last

def. Lge

def. Last’

[prop. First |

[def. Lge |

A.1. Glushkov’s properties 109

Case (5)
Last(F - G)
= {x | Jw, wx € L(F-@)} [prop. Last |
= {x | 3w, wx € (L(F) - L(E))} [def. Ly |

= {x | Jw, wx € {w1w2 | wy € L(F),w; € L(E)}} [def, L1~L2}

Two cases are distinguished according to whether € belong to L(G).

o e¢L(G)
Last(F - G)
— {x e P | 3w € P*,w'x € {w2 wy € L(E)}} [e ¢ L(G) z Lw;|w>10
— {x e P | Jwh € P*,whx € L(@)} [y = whx]
= Last(G) [prop. Last]
o €€ L(G)

First, we consider the following subcase
> L(G) = {e}
Last(F - G)
:{x\Hw,wxe{wle\wleL(?),eeL(E)}} [wy = €]
= {x | Jw, wx € {wl | wy € L(F)}}
= {x | Jw), wix € L(F)} [w1 = xw) |
= Last(F) [prop. Last |

The case € € L(G) is the union of the two previous studied cases

110 Appendix A. Proofs

Last(F - G)

_ {x T {wle | wy € L(F),e € L(E)}
' F G

({ |E|w,wx€{w1|w1€L(F) })

{ |E|w’,w’x€{w2!w2 L(E)}}
F

= Last(F) U Last(G) [from L(G) = {e} and € ¢ L(G) |

Therefore,
Last(F - G)
[Null(G) =@ = Last(G)
| Null(G) = {e} = Last(G) U Last(F)
Null(G) =@ = Last(G) U Last(F) - @ [Last(G) - @ =D]
| Null(G) = {e¢} = Last(G)ULast(F)-{e} [Last(G)-{e} = Last(G)]
[Null(G) =@ = Last(G) U Last(F) - Null(G) [Null(G) =@ |
| Null(G) = {¢} = Last(G) U Last(F) - Null(G) [Null(G) = {e}]
= Last(G) U Last(F) - Null(G)
= Last'(G) U Last'(F) - Null(G) [IH]
= Last'(F - G) [def. Last' |

Case (6) In the same manner as First,

prop 40.2 (Last of iteration) : Let P(i) the property : Last(fi) = Last(F)

Proof We prove that Vi > 0, P(i) holds.
o Last(F') = Last(F) [Base case |

1>1
o Last

x | 3w, wx € L(F } prop. Last |

def. F']

(F YU Last(F) - Null(F) prf. (5) |

]

)= {x
{ | 3w, wx € L(EF 1)}
&
Las
Las

[
[
x | 3w, wx € L(F L(Fi_l)} [prop. Last |
[
[H

t(F) U Last(F) - Null(F)

A.1. Glushkov’s properties 111

—i 1 — — —
Last(F1) — Null(F') = {€} == Last(F)U Last(F) = Last(F)
Null(F Y= @ = Last(F)UQ = Last(F)
Last(F~") = Last(F)
0]
Hence,
Last(F') = {x | Jw, wx € QL(Fi)} [prop. Last |
= {x | Jw, wx € L(FO)} U {x | Jw, wx € QL(Fi)}
= {x | Jw, wx € {e}} U Q{x | Jw, wx € L(Fi)}
=QuU QLast(?i) [wx ¢ {€} and prop. Last |
= Last(F) [Vi>0, Last(F') = Last(F)]
Last(F*) = Last'(F) [IH]

112 Appendix A. Proofs

A.1.4 Follow

def 17.4 Follow' : (2*x £)re — (2*x L) — P(2*x ¥)

Follow' (@, x) = (1)
Follow' (e, x) (2)
Follow'(a, x) = (3)
& sl . Eal
Follow' (F+G,x) = Pollow,(i, x) Tf xep OS(E) (4)
Follow' (G, x) if x € pos(G)

UFirst(G) if x € Last(F)

if x € pos(F) \ Last(F) (5
) if x € pos(G
YU First(F) if x € Last(F)
) if x € pos(F) \ Last(F)

~—

Follow' (F',x) =

prop 17.4 (Follow) :

Follow(E, x) = {y €(2*xX) | e (2*xX)*,Fw e (2*x)" : vxyw € L(E)}

Proof We prove Follow = Follow' by induction on E.
Case (1)

Follow (@, x) = {y | Jo, Jw, vxyw € L(@)} [prop. Follow |
Follow(®, x) = {y | Fo, Fw, vxyw € {}} [def. Lge |

Follow(®, x) = @ = Follow' (@, x)
Case (2)

Follow(e, x) = {y | Jv, Jw, vxyw € L(e)} [prop. Follow |
Follow(e, x) = {y | Jo, Jw, vxyw € {e}} [def. Lie |

Follow(e, x) = @ = Follow' (e, x)

A.1. Glushkov’s properties 113

Case (3)

Follow(a, x) = {y | Jo, Jw, vxyw € L(a)} [prop. Follow |
Follow(a, x) = {y | Ju, Jw, vxyw € {a}} [def. Lge |

Follow(a, x) = @ = Follow'(a, x)

Case (4)
Follow(F+G, x) = {y | o, 3w, vxyw € L(F+E)} [prop. Follow |
Follow(F+G, x) = {y | Fv, 3w, vxyw € (L(F) U L(G))} [def. Lge |
Follow(F+G, x) = {y | Jo, Fw, vxyw € L(F)} U {y | Jo, Jw, vxyw € L(E)}

Because of posex (localization of symbols (done before glushkov)), we know
that x is unique. So,

o € P | 3Jv e P*,Jw € P*,vxyw € L(F if x € pos(F
Follow(F+G, x) = {y | Y ()} pos(F)

{y € P | 3v € P*, 3w € P*, vxyw € L(E)} if x € pos(G)

Follow(F, x) if x € pos(F)
Follow(G

Follow(F+G, x) = { o) if x ¢ pos(C)

} = Follow' (F+G, x) [IH]

Case (5)

Follow(F - G, x) = {y | 3v, 3w, vxyw € L(F - G) } [prop. Follow |

Follow(F - G, x) = {y | 3o, Jw, vxyw € L(F) - L(G)} [def. L |

There are several possible cases regarding x membership.
With w = wywy and v = v10; :

114 Appendix A. Proofs

x € pos(F) = vxyw; € L(F) and wy € L(G)
x € Last(F) = vx € L(F)and yw € L(G)

x € pos(G) = vy € L(F) and vyxyw € L(G)

Therefore,
{y | Jo, Jwy, vxyw; € L(f)} if x € pos(F)
Follow(F - G, x) = {y | Jw, yw € L(E)} if x € Last(F)
{y | Fuo, Jwy, vaxyw € L(@)} if x € pos(G)
Follow(F, x) [prop. Follow | if x € pos(F) (a)
Follow(F - G,x) = { First(G) [prop. First | if x € Last(F) (b)
Follow(G, x) [prop. Follow | if x € pos(G) (c)

Case (b) is included in case (a) because Last(F) C pos(F).
So, if x € Last(F) then cases (a) and (b) are taken, thus Follow(F - G, x) =
First(G) U Follow(F, x).

With the distinct cases

1) pos(F) \ Last(F) = x € pos(F) — (a)
2) Last(F) = (x € pos(F)) A (x € Last(F)) — (a) U (b)
3) pos(G) = x € pos(G) — (c)

A.1. Glushkov’s properties 115

We have,

Follow(F, x) if x € pos(F) \ Last(F)
Follow(F - G,x) = ¢ Follow(F,x) UFirst(G) if x € Last(F)
Follow(G, x) if x € pos(G)

Follow(F - G,x) = Follow'(F-G,x) [IH]

Case (6)

Follow(F", x) = {y | Jo, Jw, vxyw € L(F*)} [prop. Follow |

Follow(F", x) = {y | Jo, Jw, vxyw € QL(P))} [def. Lie |
Follow(F", x) = G{y | 3o, 3w, vxyw € L(Pi))}

i=0

Follow(F", x) = EJOFollow(fi,x) [prop. Follow |

prop 40.3 : Let P(i) the property :

/

Follow(F, x) if x € pos(F) \ Last(F)

Follow(F', x) = Follow(F, x) U First(F) if x € Last(F)

Follow(F, x) if x € pos(F)

Proof ~ We prove that Vi > 2, P(i) holds.

oi=2

Follow(F>, x)

= Follow(F - F, x)

Follow(F, x) if x € pos(F) \ Last(F)
= q Follow(F, x) U First(F) if x € Last(F) [prf. (5)]
Follow(F, x) if x € pos(F)

116 Appendix A. Proofs

oVi>3
Follow(F', x)
= Follow(F -, x)
Follow(F ", x) if x € pos(fi_l) \ Last(F)
= Follow(?iil,x) U First(F) if x € Last(Fiil) [prf. (5) |
Follow(F, x) if x € pos(F)

It is known that

Last(F") = Last(F) [prop. Last of iteration |

pos (fi_l) = pos(F) [Iteration does not change symbols |
Thus,
Follow(F', x)
(Follow(E" ", x) if x € pos(F) \ Last(F)
= Follow(Fi_l,x) U First(F) if x € Last(F)
| Follow(F, x) if x € pos(F)
' Follow(F', x) if x € pos(F) \ Last(F)
= { Follow(F, x) U First(F) if x € Last(F) [IH]
| Follow(F, x) if x € pos(F)

Consequently, Vi > 2,j > 2, Follow(F') = Follow(F’)

So, QFOllow(Fi,x) = Follow(E”, x)
Follow(F, x) if x € pos(F) \ Last(F)
= < Follow(F,x) U First(F) if x € Last(F)
Follow(F, x) if x € pos(F)

A.1. Glushkov’s properties 117

Also, it was shown at the beginning of proof (6), that
Follow(F", x) = g}Pollow(Fi, x)
Is deduced,

Follow(F~, x)
= EJOFollow(fi, x)

—i

= @ U Follow(F, x) U L_JzFollow ,X)

Follow

(

(F,x if x € pos(F) \ Last(F)
= @ U Follow(F,x) U} Follow(F

(

F
)
,x) U First(F) if x € Last(F)
F,x)

Follow if x € pos(F)

(oU Follow(F, x) U Follow(F, x) if x € pos(F) \ Last(F)
= ¢ @U Follow(F, x) U Follow(F, x) U First(F) if x € Last(F)

| QU Follow(F, x) U Follow(F, x) if x € pos(F)

(Follow(F, x) if x € pos(F) \ Last(F) (a)
= { Follow(F, x) U First(F) if x € Last(F) (b)

| Follow(F, x) if x € pos(F) (c)

[As in proof of (5), last case (c) covers the other, so it is added to them |

| Follow(F, x) U Follow(F, x) if x € pos(F) \ Last(F) [(a) C (c)]
B Follow(F, x) U Follow(F, x) U First(F) if x € Last(F) [(b) C (c)]
| Follow(F, x) if x € pos(F) \ Last(F)

B Follow(F, x) U First(F) if x € Last(F)

= Follow' (F", x) [IH]

118 Appendix A. Proofs

A.2 LANGUAGE PRESERVATION OF GLUSHKOV

Before the start of the language preservation of Glushkov’s algorithm, some lemmas are

necessary.

Lemma 2 (Disjoint pos). VF € Xre, VG € Xre

pos(0«posex(F)) Npos(1+posex(G)) = D

This lemma will be useful during computation of automaton in different induction cases
(in order to separate set of transitions)
Proof

def2z.10:{0,1} —» P((2*x X)) = P((2*x X))

boP = {(b V,a) | (V,a) € p}
We define this function to take out o (1) from “pos(0«posex(F))” (respectively
“pos (1 «posex(G))”).
o prove pos(bsE) = bopos(E)

by induction on E

pos(be (F-G))
= pos((b+F) - (b+G)) [def. -]
= pos(b+F) Upos(b+G) [def. pos |
— (bopos(F)) U (b pos(C)) [1H]
- {(b V,a) | (V,a) € pos(F)} U {(b V,a) | (V,a) € pos(é)} [def. o]
= {(b-¥,0) | (t',0) € (pos(F) Upos(C)) }
= bo (pos(F) Upos(G)) [def. o]
= bo (pos(F - G)) [def. pos |

A.2. Language preservation of Glushkov 119

casse E=F+G

Same as case (E =F - G)

pos(b (F°))
=pos((b+F)*) [def. -]
= pos(b+F) [def. pos |
= bopos(F) [IH]
= bopos(F") [def . pos |
case E = (V,a)
pos(be(b',a)) bopos((V',a))
= pos(b- b, a) [def. «] =bo{(V,a)} [def. pos |
={(b-V,a)} [def. pos | ={(b-V,a)} [def. o |

—> pos(be(V',a)) =bopos((V',a))

pos(bee) b o pos(e)
= pos(e) [def. «] =bo{} [def. pos |
= {1 [def. pos | ={} [def. o]

— pos(bee) = bopos(e)

case E=0Q
Same as case E = €.

o prove pos(0«posex(F)) Npos(1+posex(G)) = @

pos (0« posex(F))
= 0 pos(posex(F)) [pos(b+E) = bopos(E) |

= {(O-b’,a) | (V/,a) € pos(posex(P))} [def. o]

120 Appendix A. Proofs

pos(1«posex(G))
= 1 pos(posex(G)) [pos(b+E) = bopos(E) |
= {(1-b’,a) | (V,a) € pos(posex(G))} [def. o]

V(V',a) € (2*x %),
(0-0,a) # (1-V,a) = pos(0+posex(F)) Npos(1+posex(G)) =@

Lemma 3 (posex‘l). VE € Zre, Vn € N, Yuy,...,u,_1 € &,

snd*(xg...xXy—1) = Ug...Uy_1

Uug...u,—1 € L(E) < Jxg,...,x,_1 € (2" x 2)",
0 - (E) 0 1€) {/\ Xg...Xy,—1 € L(posex(E))

Remark 3.1 (€ € L(posex™1)).

€ € L(posex(E)) <= € € L(E)

Proof By induction on E
o E=0©
(on, “ e ,xn_]_ 6 (2* X Z)n/
1. Implication : ugy...u,_1 € L(E) = (snd*(xo...xn_l) = uo...un_1>
\

A Xg...xy—1 € L(posex(E))
Bug...u,_1 € L(D)
(dxg, ..., x,_1 € (2* X Z)n,

2. Implication : ug...u,—1 € L(E) <= (Snd*(XQ---Xnﬂ — u()---unl)
\

A Xg...X,_1 € L(posex(E))
Bxo...x,_1 € L(posex(®))
o E=e¢
dxg, ..., x,_1 € (2* X Z)n,
1. Implication : ug...u,—1 € L(E) = snd* (Xg ... Xp_1) = Ug. .. Up_1
A Xg...X,_1 € L(posex(E))
Le)={e} = HNuy...uy_1€L(€),ug...uy_1==¢€
snd*(xg... X, 1) =€ = X0... X1 =€
A L(posex(e)) = {e} = x9...xy_1=¢€

A.2. Language preservation of Glushkov 121

dxg, ..., X1 € (2* X Z)n,
2. Implication : ug...u, 1 € L(E) < snd* (xg ... Xp_1) = Ug. .. Up_1
A Xg...X,—1 € L(posex(E))
L(posex(e)) = L(e) = {e} = ' x¢...x,_1 € L(posex(€)),xg...xp_1 =€
A snd*(€) =ug...uyp_1 = Ug...Uy_ 1 =€
= uUy...uy_1 =€ € L(e)
o E=a
Ixg, ..., x5 € (2¥X T,
1. Implication : ug...u, 1 € L(E) = snd*(xg ... Xp_1) = Ug ... Up_1
N Xg...Xy_1 € L(posex(E))
L(a) ={a} = Fug...uy1 €L(a),up...uy_1=a
Axg, ..., xp—1 € (2" X X)",
= (snd*(xg...x,1) =4 :>3b€2*,x0...xn1:(b,a)>
A L

(posex(a)) = {(e,a)} = X0..-Xp—1 = (€,a)
= b=¢ xp...X,_1=(€0)

dxg, ..., x5 1 € (2*x X)),
2. Implication : ug...u, 1 € L(E) < snd* (xg...xXy_1) = Ug...Uy_1
(/\ X0...Xy—1 € L(posex(E)))
L(posex(a)) = L(e,a) = {(e,a)} = F'x¢...x,_1 € L(posex(a)),
Xg..-Xp—1 = (€,a)
A snd*(e,a) = ug...uy 1 — Uy...Up_1 =4
= uUy...Uy_1 =a € L(a)
o E=F+G
Axg, ..., xn_1 € (2¥x T)",
1. Implication : ug...u, 1 € L(E) = snd*(xg...Xy_1) = Ug...Up_1
(/\ Xg...xy—1 € L(posex(F)))
L(F+G) = L(F) UL(G)
Axg, ..., x,_1 € (2*x Z)",
> ifug...uy1 € L(F) = { (snd"(xg...Xn 1) = tlo .. tn1 [IH]
(/\ Xg...Xy—1 € L(posex(F)))
Let x; = (bj,a;) and x} = (0- b;, a;)
Ixg, ..., x5 1 € (2*x X)",
inug...u,_1 € L(F) snd*(xh...x)) =1ug...up1
(/\ x...x! 4 € L(posex(F)))

*tn—1

122 Appendix A. Proofs

Ixg, ..., x,1 € (2*x Z)",
> ifug...uy, 1 € L(G) = snd*(xg...Xy_1) = Ug...Uy_1 [IH]
</\ Xg...Xy—1 € L(posex(G)))
Let x; = (bj,a;) and x] = (1- b;, a;)
3xp, ..., X1 € (2Fx D)1,
inug...u,1 € L(G) = (snd*(x{)...x;_l) = uo...un_1>
A xp...x! € L(posex(G))

Hence,
uy...up—1 € (L(F)UL(G))
3x, ..., x4 € (2¥x D),
= snd* (x(...x,,_1) =ug...Up_1
A xp...xl,_; € (L(0+posex(F)) U L(1+posex(G)))
Ug...Uy_1 € L(F+G)
E|X6, ce ,x;_l S (2* X Z)n/
—
- snd* (x(...x),_1) =Ug...Up_1
A xp...xl,_; € L(0+posex(F) + 1+posex(G))
Ug...Uy—1 € L(F+G)
E|X6, ce ,x;_l S (2* X Z)n/
—

- snd* (x(...x),_1) =Ug...Up_1
AN xj...x),_; € L(posex(F + G)) [def. posex |

Ixo, ..., x5 € (2¥X),

2. Implication : ugy...u,_1 € L(E) < { snd*(xg...xy_1) = Ug...Uy_1
A v e L (posex(F)))
L(posex(F + G)) = L((0+posex(F)) +

= L(0+posex(F)U

(1+posex(G
(

> if xp...x,-1 € L(0«posex(F)) Asnd*(xg...xy_1) =ty ... Up_1

1+posex(G)

A.2. Language preservation of Glushkov 123

(0-bg,up) ... (0-by_1,up_1) € L(0+posex(F))
A\ snd*((O - by, Mo) e (0 -by_1, un_l)) =Upy...Uy

. (bo, o) - .. (by—1,1p—1) € L(posex(F))
A\ Si’ld*((bo, u()) e (bn—ll un_l)) =Uy...Upu—
:>uo...un_1€L(F) [IH}
> if xg...x,_1 € L(1+posex(G)) Asnd™(xg...Xp—1) = Ug...1Uy

(1-bo,ug)...(1-by_1,u,—1) € L(1+posex(G))
A snd*((1-bo,ug) ... (1-by_1,up—1)) = tg. ..Uy

. (bo, ug) - .. (by—1,un—1) € L(posex(G))
N snd*((bo,ug) ... (by—1,Up—1)) = tg ... Up_q
= up...uy_1 € L(G) [IH]
Hence,

dxo, ... , Xn—1 € (2* X Z)n/

snd* (xg...xXy_1) = Ug...Up_1

A x...xy—1 € (L(0+posex(F)) U L(1«posex(G)))
:>uo...un,1€((F) ())
dxg, ..., x,_1 € (Q*X Z)n,

snd* (xg...xXy_1) = Ug...Up_1
A Xg...xp_1 € L(posex(F + G)) [def. posex |

— uo...un_1€L(P—|—G)

o E=F-G
dxg,...,x,-1 € (2* X Z)n/
1. Implication : ug...u,_1 € L(E) = (Snd*(xO---xnl) = 1. __un1>

A Xg...Xp—1 € L(posex(E))

L(F-G) = L(F) - L(G)

... Uy_1 € L(F
ug...uy—1 € L(F)-L(G) = dIm,0<m<n, “o-- - Um—1 (F)
Up ... Uy—1 € L(G)

124 Appendix A. Proofs

dxg,...,x,_1 € (2* X Z)n,
> ug...Uy—1 € L(F) = snd*(xg...Xp_1) = Ug...Uy_1 [IH]
A Xg...Xy—1 € L(posex(F))
Let x; = (b;,a;) and xlf = (0-b;,4a;)
3xg, ..., x), 1 € (2 X D),

m—1
inug...uy_1 € L(F) = snd*(xfy...x)) =1g...Uy_1
A xp...x! 1 € L(posex(F))

> if Uy ... Uy 1 € L(G) = xp...x,_1 € L(posex(G)) [IH]
Let x; = (bj,a;) and x} = (1- b;, a;)
3x)y, .., xl 1 € (2FXE),
inuy...u,1 € L(G) = snd* (X, ... X}, 1) = Up ... Up_1
(/\ Xpy ... X),_1 € L(posex(G)) >
Hence,
Uo o gl Uy € (L(F) - L(G))
Ixg, ..., x4 € (2¥x D),

7 n—1
— snd* (x(...x), 1) =ug...Up_1
| \A x5...x;_ 1 € (L(0-posex(F)) - L(1«posex(G)))

Uy .. .Uy Uy ... uy_1 € L(F-G)
3xp, .., xl € (2Fx D),

<~
= (snd*(x{)...x;_l) = Ug...Upy_1)

A xfy...x! ;€ L((0eposex(F)) - (1+posex(G)))

uy...uy_1 € L(F-G)
3xg, ..., x4 € (2"x X)",

<
— snd*(x{y...x},_1) =Ug...Uy_1
A xjy...x),_; € L(posex(F - G))

**n—1

Ixg, ..., X1 € (2" X L),
2. Implication : ug...u,_1 € L(E) <= snd*(xg...Xy_1) = Ug...Uy_1
(/\ Xg...xXy—1 € L(posex(E)))
We have
L(posex(F - G))
L(posex(F - G))
and
Xg...xp—1 € L((0+posex(F))) - L((1+posex(G)))

L((0«posex(F)) - (1+posex(G)))
L((0+posex(F))) - L((1+posex(G)))

A.2. Language preservation of Glushkov 125

Xo...Xm—1 € L((0+posex(F)))
Xm.--Xp—1 € L((l -posex(G)))

> X0...Xp_1 € L(0«posex(F)) Asnd*(xq...Xm_1) = Ug...Uy_1

— 3m,0§m<n,{

(0-bg,up) ... (0 by_1,um—1) € L(0+posex(F))
A snd*((O - by, uo) e (0 . bm_l,um_1)> = Uy...Uy_1

(bo, ug) - .. (byy—1, um—1) € L(posex(F))
- {/\ snd™ ((bo, ug) - .. (by—1, Um—1)) = g ... Uy—1

:>uo...um,1€L(F) [IH]

> Xg...xy—1 € L(Leposex(G)) Asnd™(xg...xp_1) =ty ... Up_1

(1 b, ttm) ... (1-by_1,up—1) € L(1+posex(G))
AN Sl’ld*((l . bm, I/lm) ce (1 . bn—lr un_1)> = Uy... Uy

(b tim) - . (by—1,1p—1) € L(posex(G))
— {/\ snd™ (b, um) - .. (bp—1,Un—1)) =t ... Up_1

= Upy...up—1 €L(G) [IH]

Hence,

snd* (xg...xXy_1) = Ug...Uy_1
A Xg...xp—1 € (L(0posex(F)) - L(1+posex(G)))
= Ug...Uplm—1...Uup—1 € (L(F)-L(G))

Ixg, ..., xy-1 € (2¥X)",
— <snd*(xo...xn1):u0...un1) = up... U1 € L(F-G)

dxg...x,1 € (2* X Z)n/

A Xg...Xy—1 € L(posex(F - G))
o E=F*
Ixp, ..., X1 € (2" X X)",
1. Implication : ug...u,_1 € L(E) <= snd*(xg ... Xy 1) = Ug.. .Uy 1
(/\ Xg...Xy—1 € L(posex(E)))
L(F*) = gL(Pf)
By induction on k.

> k=0 = L(F%) ={e} [seeE=e case]

> k>0 = iLkJOL(Fi) = <I:U:L(Pi)> U L(F%)

126 Appendix A. Proofs

> ifug...u, 1€ I:L_J:L(Pi) then IH
dxg, ..., xy_1 € (2* X)",
Ug...Uy_q € I:L_J:L(Fi) — snd*(xg...xp_1) Iiug T
A Xg...Xp_q1 € gL((O-posex(F))i)
» ifuy...u,_ € L(FY)
— Vje{l...k},Im,m' =0< - . <ml 1 <m/ </t < ... <n—1,

(ml is the first symbol index of the j** word belonging to L(F))

(oty g € L(F) = 3x,0,...,%,1_1 € (2*x X)",

U0 .
SHA™ (X0 o Xy) = Up0 . Uyt _q [1H]
N X0 ... X,1_q € L(posex(F))
Upji1... U1 € LF) = 3Ix,1,...,x,;_1 € (2"xX)",
snd* (X, 1. X5 1) = Upj1... Ui q [IH]
N Xj1...%,j 1 € L(posex(F))
Uk ... Up—1 € L(F) - mek,. o, Xp-1 € (2* X Z)n,
snd™ (X oo X1 = Upgic ... U1 [IH]
\ A Xk ...Xy—1 € L(posex(F))
Let x; = (bj,a;) and x! = (0- b;,a;) in
[u0...u € L(F) = 3x! o, X € (2P X D),
snd™(x! o .. X! 1) = U0 e Uyt g [IH]
ANoxg...x € L(0eposex(F))
Wit ooty € L(F) = 3y, x ;€ (2¥x)",
snd"(x oy X) = Uit Uy g IH]
A oxligxl € L(0eposex(F))
Upk ... Up—1 € L(F) = 3x],...,x,_; € (2*xX)",
snd " (x! ... x| = Ug. .Uy (IH
{ A xl...x, 4 € L(0«posex(F))

d*(xg...Xp_1) =Ug...U,_
— (uo...un_l EL(Fk) — dxg,...,X%,_1 € (Q*Xz)n,{sn (xO Xn 1) 23] Uy >

A xg...Xn-1 € L((0«posex(F)))

A.2. Language preservation of Glushkov 127

Hence,
-1
Uo. .. ty_1 € (L%L(Fl)> U L(FY)
: : 5y snd*(xg...Xy_1) = Ug...Uy_1
= dxg,...,X;_1 € (2% , k-1 ‘
! AXg...Xp 1 € (L%L((O-posex(l—"))ﬂ) U L((0«posex(F))¥)
k .
Uug...Uy_1 € L:%)L(Fl)
— snd* (xg...Xp_1) = Ug...Up_1
= dxg,...,X _1€(Q*><Z)n, k .
! AXQ...Xp_1 € L_J()L((O-posex(F))l)

has been proved Vk € IN, so

Ug...Uy_1 € L:%)L(Fi)

— snd* (xg...Xp_1) = Ug...Up_1
— dxg,...,X,-1 € (2" x X)", o0 ‘
’ w1 €) AXg...Xp 1€ EJOL((O-posex(P))l)
up...uy_1 € L(F*)
— (X0 Xp1) = UQ .. Uy def. L
s Tyt € (@, (0 Xno) = ot Ldef- L
A xq...x,—1 € L((0+posex(F))*)
Ug...Uy—1 € L(F*)
<~

= B ma € SO0) Do | (]
Ixg, ..., xy-1 € (2¥X)",
2. Implication ug...u,_1 € L(E) <= snd*(xp ... Xp_1) = Ug... Uy_1
(/\ Xg...Xy—1 € L(posex(E)))
L(posex(F*)) = L((0+posex(F))*) = iqu((O-posex(P))i)

By induction on k.
> k=0 = L(_)%L((O-posex(lf))i) = L((0+posex(F))%) = {e} [see E = e case |

> k>0 = Q)L((O-posex(lf))i) = (I:L_J:L((O-posex(P))i» UL((O-posex(F))k)>
snd* (xg...x,_1) = ug 1
» if dxg,...,x,_1 € (2* X Z)”, v x e kL_J (0 posex then IH

snd”* (xg ... x,_1 0...Upy

T

1 =1
dxg, ..., x,_1 € (Q*X Z)n,{) } — Ug...Uy_1 € QL(FZ)

=u
ANXg...Xy_1 € (O posex(F

128 Appendix A. Proofs

snd* (xg...Xy_1) = Ug...Up_1
A Xg...xy—1 € L((0«posex(F))F)
— Vie{l...k},Im,m' =0< - . <m 1</ <mt1 <...<n—1,

.

» if dxg,...,x,_1 € (Q*X Z)n,{

0,0, Xy 1 € (26X TN SNA™ (X0 .o X1 1) = Uy« o Uyt 4
mOs rAml—q ’ A X0 oo Xp1_q € L(O.posgx(li‘))

%
SHA™ (X1 o Xyt _q) = Uppj1 .. Uy g

dx iq,...,x, i 4 € (2"x X)),
e w1 € () {/\ X,j-1... %, 1 € L(0«posex(F))
snd™ (X k... Xp—1) = Uy ... Upy_1
| N Xk ...Xy—1 € L(0eposex(F))
Let x; = (0- b;, a;) [because xg ... x,_1 € L((0«posex(F))¥) |
and x; = (b;,a;) in
(3x! o, X € (2P X D),
snd" (X! o ... X!) = U0 U g = Upo... Uy € L(F) [IH]
AN oxg...x g € L(posex(F))

Ik, X1 € (2¥Xx X)), {

Hx;/ﬂil, « ey x:/n]_l 6 (2* X Z)n/
{s:af,i*‘(3c7’11]-_1 cx) = ety | = Uity g € L(F) [IH]

A x! x' . € L(posex(F))

mj71 .. mj—l

Hx:nk,...,x;fl € (2*x)",

snd™(x! oo X)) = Ukt = Uyk...Uy—1 € L(F) [IH]
\ A xl .. x4 € L(posex(F))
3x, ..., xl € (2Fx D),
— |ug...u,1 € L(FF) = snd* (x(...x,,_{) =ug...Up_1
A xp...x,_; € L((0«posex(F))¥)

Hence,
* / / _
snd*(x(...x),_{) =1ug...Uy_1

B, xyg € (27T Xp. X g € (QL((O'POSex(F))i)> HO-pesex(F)Y)

— ...y € CL_J:L(FZ‘)) U L(E¥)

A.2. Language preservation of Glushkov

129
snd*(x{y... X, 1) =Ug...Uy_1
Ixg, ..., x4 € (2Fx D), k ,
— AXh...xl € gL((O-posex(P))’)
k .
= Ug...Uy_1 € E%L(FZ)
It has been proved Vk € IN, so
snd*(x)...x) =ug...uy_1
3xg, ..., xl_1 € (2*XX)", / 0 / =y " i
— AXp...xl | € Z‘L:J()L((O-posex(l-”)))
= Ug...Uy_1 € L;%L(Fi)
snd*(x)...x) =ug...uy_1
Ixh, .. x e (2), 0 n—1 "
= 0 1 €) {/\ xp...x,,_y € L((0+posex(F))*) [def. Lie
— Ug...Uy_1 € L(F*)
* !/ !/ _
HX(I)/ e ,xT/’l—l < (2* X Z)n/ Snd, (xo . .,. xn_l) h uo o ;’:n_l
— A xh...x),_4 € L(posex(F*) [def. posex |

= Ug...Uy_1 € L(F*)

]

0

130 Appendix A. Proofs

Theorem 1 (Glushkov preserves language). VE € Xre

L((glu_autom(E) o glushkov o posex o snf)(E)) = L(E)

Proof
We know from [6] that L(snf(E)) = L(E). It remains to prove

L((gluautom(E) o glushkov o posex)(E)) = L(E)

By induction on E.
In the following, follow will often be considered as the graph of the function, (i.e. a set

of transitions) thereby giving us the possibility to use set operators.
Case E=0: L(E)=L(®)=®

A, = (gluautom(E) o glushkov o posex)(QD)
= (glu_autom(E) o glushkov)(QD)
= glu_autom (E) (first = @, last = @, null = @, follow = @)

I
Q

F=0 = L(A,)

A.2. Language preservation of Glushkov 131

Case E=c¢: L(E) = L(e) = {e}

A, = (glu_autom(E) o glushkov o posex)(€)
= (glu_autom(E) o glushkov)(e)
= glu_autom (E) (first = @,last = @, null = {e}, follow = @)

Q= {a1}
=0
A= 6=0
I'={q1}
\F:{ql}
(F=1)A(0=0) = L(A,) ={€}
Case E=a: L(E) = L(a) = {a}

A, = (glu_autom(E) o glushkov o posex)(a)
= (glu_autom(E) o glushkov)((e,a))

= glu_autom (E) (first = {(€,a)},last = {(e,a)}, null = @, follow = {Follow((e,a)) = D})

Q={qtU{(ea)}
L = {a}

A= 6=A{(qra) = (ea)}
I={q1}
F={(ea)}

There exists only one transition in J, this transition goes from the initial state to the final
state and its label is ‘a’. So, L(A,) = {a}

Case E=E{+ E>:

132 Appendix A. Proofs

Ay = (gluautom(E) o glushkov o posex)(E)
= (glu_autom(E) o glushkov o posex)(E; + Ep) [E=Ei+E; |

= (glu_autom(E) o glushkov)((0«posex(Eq)) + (1+posex(Ey))) [def. posex |

first = First(0sposex(E1)) U First(1e«posex(Ey))
last = Last(0«posex(E1)) U Last(1eposex(Ey))
null = Null(0«posex(E1)) U Null(1+posex(E;))
{Follow(O-posex(El),x) | x € pos(O-posex(El))}
follow = | U
{Follow(l-posex(Ez),x) | x € pos(l-posex(Ez))}

= glu_autom (E)

[def. glushkov |

(

Q = pos(posex(E)) U {q1}
Y =X

Va € X,0(qp,a) = {x | x € first,snd(x) = a}
{Vx €(2*xX),Vaeckéx,a)= {y | y € follow(x),snd(y) = a}

I ={q:}
F - {lastu {q1} if null = {e}

) last otherwise

o =

\
reminder of def. ¢lu_autom
[8

A.2. Language preservation of Glushkov 133

Q = {qr} U pos(0+posex(Ex)) U pos(1 - posex(Ey))

Y= {snd(x) | x € pos(O-posex(El))} U {snd(x) | x € POS(l'POSWC(EZ))}

(Va e {snd(x) | x € pos(O-posex(El))} U {snd(x) | x € pos(l-posex(Ez))},
o(qr,a) = {x | x € First(0e+posex(Eq)) U First(1«posex(Ey)),snd(x) = a}

5 = { Vx € pos(0«posex(E1)) Upos(1e«posex(Ey)),
Va e {snd(') | x' € pos(0«posex(E) }U {snd) | x" € pos(1- posex(Ez))}

5(x,a) = {y ye (FOllow(O.posex(El),)UFollow(loposex(E2),x)) }
= {q1}

N snd(y) =
if Null(0«posex(E1)) U Null(1eposex(E;)) = {€}
F= {q1} U Last(0«posex(E1)) U Last(1 « posex(E3))
\ otherwise Last(0+posex(E1)) U Last(1«posex(Ey))
[application of def. glu_autom |

134 Appendix A. Proofs

Q = {q1} Upos(0eposex(Eq)) U pos(1sposex(Ey))

Y= {snd(x) | x € pos(O-posex(El))} U {snd(x) | x € pos(l-posex(Ez))}

Va € {snd(x) | x € pos(Ooposex(El))},
5(qr,a) = {x | x € First(0«posex(Ey)),snd(x) = a} [61]
Va € {snd(x) | x € pos(1«posex(Ey) }
5(qr,a) = {x | x € First(1«posex(E;)),snd(x) = a} [6]
Vx € pos(0«posex(Ey)),
5 —
= Va € {snd(x) | x € pos(O-posex(El))},
5(x,a) = {y | y € Follow(0+posex(Ey),x),snd(y) = a} [63]
Vx € pos(1«posex(Ey)),
Va € {snd(x) | x € pos(l-posex(Ez))},
\ 5(x,a) = {y | y € Follow(1+posex(Ey), x),snd(y) = a} [64]
I'={aqr}
if Null(0+posex(E1)) U Null(1«posex(E;)) = {€}
F= {q1} U Last(0«posex(E1)) U Last (1« posex(E3))

otherwise Last(0+posex(E1)) U Last(1«posex(Ey))

\

[lem. Disjoint pos, (d1,...,0s4) are names given to the subset of delta described in its line}

L(A) =L(E) < (VweX*,we L(A) < w e L(E))
Two distinct cases on |w| are considered

olwl=0—>w=¢

e€L(A) <= ICF < q;€F

<= Null(0+posex(E1)) U Null(1+posex(E)) = {e} [def F,q1 & last |
<= € € (L(0+posex(E1)) U L(1+posex(Ey))) [prop. Null |
<= € € L((0+posex(Ey)) + (1+posex(Ez))) [def. Lig |
<= ¢ € L(posex(Ey + E3)) [def. posex |
<= ¢ € L(posex(E)) [E=E;+E; |
<= e € L(E) [rmk. € € L(posex™1)]

ollwl=nn>1)—>w=uy...u,_1 € L(A)

A.2. Language preservation of Glushkov 135

< 3x, (x € (6*(6({q1}, o), u1 ... uy_1)) A (x € F)
From A,, two cases according to membership of the word’s first symbol must be distin-

guished
> if ug € {snd(x) | x € pos(Ooposex(El))},w € L(A)

(Vie{l..n-1)

Jdxg € First(0+posex(Ey)), [A, [61], up membership |
= dx; € Follow(0+posex(Eq),x;i_1), [A, [62], xi_1 membership |
x,_1 € Last(0e«posex(Ey)), [A, [F], x,—1 membership, x,_1 # q |

\ snd*(xg...Xy—1) = Ug...Uy_1

For the following , each introduced variable x € pos(0eposex(E;)) and w €
pos(0«posex(Eq))*
(Vie{l...n—l}
Jxo, Jw), xow) € L(0eposex(Ey)), [prop. First |
<~ § I, Fw;_q, Fw!, wi_1x;_1x;w; € L(0«posex(Ey)), [prop. Follow |

Jw,—1, wy_1x,-1 € L(0eposex(Ey)), [prop. Last |

\ snd* (xg...Xp—1) = Ug...Uy_1

For x¢...x,_1 to be the word constrained by all definitions above, we have

[wi = xp...x;_
vie{0...n—-1}, | ' 0 -l]

W = Xip1 - Xp1
XQ...Xp_1 € L(O-posex(El))]

snd*(xg...Xp_ 1) = Ug.. .Uy 1

So, we also have

> if up € {snd(x) | x € pos(loposex(Ez))}

For the same symmetric reasons, we have
snd* (xg...xXy_1) = Ug...Uy_1

X0...xXy—1 € L(1eposex(Ey))]

> hence, uy € {snd(x)]x € pos(O-posex(El))} U {snd(x)\x € pos(l-posex(E2))}
[no other possibility |

136 Appendix A. Proofs
. snd Xp1) = UQ .. Uy_1 A
— Ixp... %1,
0 Tnt X1 € L(0+ posex(El))) (x0... 251 EL(l-posex(EZ)))>
snd*(X 1) =uy...uy_1 N\
< Jxg...Xx,_1, "
Ot { xy—1 € (L(0« posex(El))UL(l-posex(Ez)))
snd* (x Xp—1) = UQ...Uy_1 A
<— dxog...X,-1, def. L
0l { .xp—1 € L((0- posex(El))-|—(1-posex(E2))) | def Luc |
snd™(Xp—1) = UQ. . Ug_q A
<~— dxog...x,_1, " def . posex
0 - { Xp-1 € L(posex(E1+E2)) L def-p)
snd* (x 1) = UQ .. Upy_1 A
<— dxg...X,_1, E=E{+E
0 - { Xp—1 € L((posex(E)) [1+
< ug...uy_1 € L(E) [lem. posex—!]

A.2. Language preservation of Glushkov 137

Case E=E: E:

A. = (glu_autom(E) o glushkov o posex)(E)

= (glu_autom(E) o glushkov o posex)(E; - Ep) [E=Ei-E]

= (glu_autom(E) o glushkov)((0«posex(E;)) - (1+posex(E,))) [def. posex |

= glu_autom(E)

(

2 =X

I ={q1}

last

5 =
{Vx €(2"xX),VaeXé(x,a) =

first = First(0+posex(E1)) U First(1eposex(Ep)) - Null(0«posex(Ey))
last = Last(1+posex(Ep)) U Last(0eposex(Eq)) - Null(1«posex(E;))
null = Null(0«posex(E1)) N Null(1«posex(E;))
{Follow(O-posex(El),x) | x € pos(O-posex(El))}
follow = | U {Ax.First(l-posex(Ez)) | x € Last(O-posex(El))}
U {Follow(l-posex(Ez),x) | x € pos(l-posex(Ez))}

Q = pos(posex(E)) U{q1}

Va € X,5(q1,a) = {x | x € first,snd(x) = a}
{y | y € follow(x),snd(y) = a}

F— {lastU {q1} if null = {e}
\

otherwise

| reminder of def. glu_autom |

138 Appendix A. Proofs

/

Q = {q1} Upos(0+posex(Eq)) U pos(1posex(E))

Y= {snd(x) | x € pos(O-posex(El))} U {snd(x) | x € pos(l-posex(Ez))}

(. First(0«posex(E7))
Va € %,6(q,a) =< x U First(1eposex(Ey)) - Null(0«posex(Ey))
Asnd(x) =a

5 = { Vx € pos(0«posex(E1)) U pos(1e«posex(Ey)),

€ Follow(0+posex(Eq), x) U Follow(1«posex(E), x
Va € %,6(x,a) = {y yAsnd(y) :(a posex(Ey), x) (1+posex(Ey))}

U {y | y € First(1eposex(Ey)),x € Last(0+posex(Ey)),snd(y) = a}

\

I'={q1}
if Null(0+posex(E1)) N Null(1«posex(Ey)) = {€}
F = {1} U (Last(0+posex(Ey)) - Null(1+posex(E;))) U Last(1 « posex(E))
\ otherwise (Last(0sposex(Eq)) - Null(1+posex(E;))) U Last (1« posex(E;))

[application of def. glu_autom |

A.2. Language preservation of Glushkov 139

;

Q = {q1} Upos(0+posex(Eq1)) Upos(1+posex(Ey))

Y= {snd(x) | x € pos(O-posex(El))} U {snd(x) | x € pos(loposex(Ez))}
(Va e {snd(x) | x € pos(O-posex(El))},
5(qr,a) = {x | x € First(0«posex(Ey)),snd(x) = a} [61]

Va € {snd(x) | x € pos(l-posex(Ez))},
5qp,a) = {x x € First(1sposex(Ep)) - Null(0e«posex(Ey)), }
[, a) =

snd(x) =a
Vx € pos(0«posex(Ey))
Va € {snd(x) | x € pos(O-posex(El))},
A = 5(x,a) = {y | y € Follow(0+posex(Ey),x),snd(y) = a} [63]

Vx € Last(0+posex(Eq))
Va € {snd(x) | x € pos(l-posex(Ez))},

5(x,a) = {y | y € First(1sposex(Ey)),snd(y) = a} [64]

Vx € pos(1«posex(Ey)),
Va € {snd(x) | x € pos(l-posex(Ez))},

5(x,a) = {y | y € Follow(1+posex(Ey), x),snd(y) = a} [65]

I={q1}

if Null(0«posex(E1)) N Null(1sposex(Ep)) = {e}
F = { {91} U (Last(0+posex(Eq)) - Null(1+posex(Ez))) U Last (1« posex(Es))
otherwise (Last(0+posex(Ey)) - Null(1+posex(E3))) U Last(1+posex(E))

[lem. Disjoint pos |

L(A)=L(E) < (VweX*,we L(A) < w e L(E))

olwl=0—>w=¢

140

Appendix A. Proofs

e€L(A) < qr€F

<= Null(Oeposex(Ey)) N Null(1«posex(E;)) = {€} [def F,qp & last |
<= €€ (L(0+posex(E1)) N L(1+posex(Ey))) [prop. Null |
<= (e € L(0+posex(E7))) A (e € L(1+posex(Ey)))

<= €€ (L(0+posex(Ey)) - L(1+posex(Ey))) [rmk. Ly-L, |
<= e L((0+posex(Ey)) - (1eposex(E;))) [def. Lie |
<= ¢ € L(posex(E; - E3)) [def . posex |
<= € € L(posex(E)) [E=Ei-E |
<= e € L(E) [rmk. € € L(posex™1) |

olwl=nmn>1) = w=u...uy—1 € L(A) < 3x,(x € 5*(6({q1},u0), u1...up_1)) A

(x € F)
> if ug € {snd(x) | x € pos(0+posex(Er)) }

» if Im0<m<n—-2Vie{l..m},Vje{m+2...
xi_1 € pos(0eposex(Eq)), w € L(A)

dxg € First(0«posex(Ey)),
dx; € Follow(0+posex(Ey), x;_1),
Jxm € Last(0«posex(Eq)),
Ixpmy1 € First(1eposex(E)),
Jx; € Follow(1+posex(Ez), xj_1),

n—1},

A, [01], up membership |
A, 03], xi_1 membership |
Definition of m |

A, [04], x;, membership |

.[65], x;_1 membership |

[
[
[
[
(4
[

xp—1 € F, Definition of w € L(A) |
\ snd™ (Xg .« - X Xppa1 - Xp1) = UQ .« Upllyya - Upy_1
Whether m =n —2 or m < n — 2 we have
(xn—1 € First(1eposex(Ey)))

Xp—1 € pos(1sposex(Ey))

Xy—1 € F <= x,,_1 € Last(1+posex(E;))
[(xn—1 # q1) A (x4—1 & Last(0+posex(E7))) |

for the following , introduced variables belong to

V (xy—1 € Follow(1+posex(Ey), xn—2))

x € pos(0e«posex(Eq

((

((E1))*
((

((

w € pos(0«posex
Er

w € pos(1eposex(Ey

x € pos(1e«posex

)
)
)
)

*

A.2. Language preservation of Glushkov

141

. . I oo e e .
Elx],EIw],l,Ele, Wj_1Xj—1X{W0; 1eposex(Ey)),

Jxo, Jwy, xow), € L(0«posex(Ey)),

Jx;, Jw;_q, Fw!, wi_1x;_1x;w! € L(0«posex(Ey)),
3x,, Jwim, WXm € L(0eposex(Ey))
g1, 30, 1, Xppw,, . € L(1eposex(Ez)),
€ L((E2))

€ L()

Axy 1, Jwy, g, Wy—1Xn—1 1'POS€X(Ez

*
L Snd™ (X0 XXy 1+ Xy 1) = UQ - Ul g1 -+ U1

| prop. First |
[prop. Follow |
[prop. Last |
[prop. First |
[prop. Follow |
[prop. Last |

For x¢...x,_1 to be the word constrained by all definitions above, we have

Hence,

» if Vie{l

/

\

Wypt+1 = €

wmﬂ = Xpmi2...Xpn—-1

...n—1},x;_1 € pos(0eposex(Eq)), w € L(A)

wy = €

/
wO:xl...x”fl
w; = Xp...X1

/
W; = Xjiqf1... Xy

/

ZU]' = Xm41--- x]'_l

[
ZUj = X]‘_H oo Xp—1 |

X0...Xu € L(0posex(Eq))
Xpi1--- Xy 1 € L(1eposex(Ey))

*
snd™ (XQ .. X Xpyi1 - Xpy1) = UQ v U] - - Up_1

dxg € First(0«posex(Ey)),
dx; € Follow(0«posex(E1), xi_1),
X,_1€F

snd*(xg ... Xy 1) = Ug...Up_1

[<= m=n—-1]

[A,[61], up membership |
[A,[03], 19 membership |
[Definition of w € L(A) |

Xp—1 € F <= x,_1 € (Last(0+posex(Ey)) - Null(1+posex(E)))

[a1 € pos(0+posex(Ey)) |

142 Appendix A. Proofs

Xp—1 € F <= (x,_1 € Last(0+posex(E7))) A (Null(1+posex(E;)) = {€})

x € pos(0+posex(Eq))
for the following , each introduced variable ¢ and

w € pos(0e«posex(Eq))*

Ixo, Jwy, xow(, € L(0+posex(Ey)), [prop. First |
3x;, Jw;_q, Fw!, wi_1x;_1x;w: € L(0«posex(Ey)), [prop. Follow |
Ax, Jwp, WXy € L(0eposex(Ey)), [prop. Last |

\ snd* (xg...xy_1) = Ug...Uy_1

For x¢...x,_1 to be the word constrained by all definitions above, we have

wy = €
A
Wy = X1..-Xp—1

w; = Xo...Xj1

/!
_ZUi = Xit1---Xpn-1

Xg...xXy—1 € L(0eposex(Eq))

<
snd* (xg...xy_1) = Ug...Uy_1

> ifug € {snd(x) | x € pos(l-posex(Ez))}
> Vie{l...n—1} € pos(1sposex(Ey)), w € L(A) [<= m=-1]

;

dxo € (First(1«posex(Ey)) - Null(0«posex(E7))), [A,[62], up membership |
Jx; € Follow(1 «posex(E3), x;_1), [A,[05], u;—1 membership |
X1 €F | Definition of w € L(A) |

Snd*(X() e xn_l) = Uup... Uy

\

Xp—1 € F <= x,_1 € Last(1+posex(E,))
xo € (First(1eposex(Ez)) - Null(0+posex(Ey)))

A.2. Language preservation of Glushkov 143

< (xo € First(1+posex(E))) A (Null(0+posex(E;)))

for the following , each introduced variable x € pos(1+posex(E;))

and w € pos(1+posex(Ey))*

Ixo, Jwp, xowy € L(1+posex(Ey)), [prop. First |
— Jx;, Jw;_q, Fw, wi_1x;_1x;w; € L(1+posex(Ey)), [prop. Follow |
Ix,,, Fwp, WmXxm € L(1eposex(Ey)), [prop. Last |
\ snd* (xg...xXy_1) = Ug...Up_1

For xj...x,_1 to be the word constrained by all definitions above, we have

wy = €
/
Wy = X1...Xp—1

w; = Xp...-Xi

! __
_wl — xi_i'_l...xnfl

Xg...Xp—1 € L(1eposex(Ey))

—
snd*(xg...xXy_1) = Ug...Uy_1

> Hence,

)
dm,-1<m<n—1,3Ix0...Xm...X_1,

= snd* (X ... Xm .o Xp_1) = UQ . Up . Upy_1

A ((xo ... Xy € L(0eposex(Eq))) A (X1 .- Xn—1 € L(1-posex(E2)))>

\

(
dm,-1<m<n—1,3dx0...Xm...X_1,

<~ snd* (X ... Xy Xp_1) = UQ . Uy Upy_1 [def. 1L, |

A (xo...xm...xn_l € (L(0«posex(Ey)) - L(l-posex(Ez)))>

\

144 Appendix A. Proofs

dm,—1<m<n—1,3xy...Xm...X0_1,
<~ snd™ (X0 ... Xy Xy 1) =UQ- .Uy oo Upy_1 [def. posex |
A (xo co Xm...Xy_1 € L(posex((Eq) - L(Ez)))>
— { Axg...xp_1,5nd" (X0 .. Xy_1) = Ug.. . Uy_q (E—F B]

A (%0... %1 € L(posex(E)))

< ug...uy_1 € L(E) [lem. posex !]

A.2. Language preservation of Glushkov 145

Case E =F*:

A, = (gluautom(E) o glushkov o posex)(E)

= (glu_autom(E) o glushkov o posex)(F*) |E=F*]

= (glu_autom(E) o glushkov)((0«posex(F))*) [def. posex |

= glu_autom(E)

first = First(0«posex(F))
last = Last(0«posex(F))
null = {e}
{Follow(Ooposex(F),x) | x € pos(O-posex(F))} U
follow =
{Ax.First(l-posex(Ez)) | x € Last(O-posex(P))}

[def. glushkov |

p

X =X

I ={q:}

last

Q = pos(posex(E)) U {q1}

Va € %,6(q1,a) = {x | x € first,snd(x) = a}

P
{Vx €(2*xX),Vaeckx,a)= {y | y € follow(x),snd(y) = a}

P - {lastu {q1} if null = {e}

otherwise

[reminder of def. glu_autom |

|

146 Appendix A. Proofs
Q = {q1} Upos(0+posex(F))
Y= {snd(x) | x € pos(O-posex(F))}
Va € X,6(qp,a) = {x | x € First(0«posex(F)),snd(x) = a} [61]
Vx € pos(0e«posex(F)),
A, =X 6= VaeX,6(x,a) = {y | y € Follow(0+posex(F), x),snd(y) = a} [6]

Vx € Last(0«posex(F))
VaeX,6(x,a) = {y | y € First(0+posex(F)),snd(y) = a} [63]

I={q}

\ F = {q1} U Last (0« posex(F))

| application of def. glu_autom |

L(A)=L(E) < (VweX*,we L(A) < w e L(E))

w=1ug...up_1 € L(A) < 3x, (x € 6*(6({q1},u0), 11 ... 1p—1)) A (x € F)

(
Jxo,

dk, Vi
Jx;,
Xk
=\ I
K/, Vi

Hxl-,

. E|x7’l—1/

€ First(0+posex(F)), [A[01]]

€ {0...k},

€ Follow(0+posex(F), x;_1) [Asl62]]

€ Last(0+posex(F)) [Def k |

€ First(0+posex(F)) [A[03] |

e {k+2...k'},

€ Follow(0+posex(F),x;_1) [As[02]]

€ Last(0«posex(F)) [Def of w € L(A) |

An induction on the number of J3 applied (noted m) is chosen

om=20

> |lw=0—-w=e¢

A.2. Language preservation of Glushkov 147

e € L(A) [I:F}
€ € L(F*) [def- LRE}

> |lwl=n—>w=uy...uy_1,w € L(A)

(

Jxo, € First(0eposex(F)), [Aild1]]
Vie{l...n—1},

— Jx;, € Follow(0+posex(F), x;_1) [A[6)]

xp_1, € Last(0«posex(F)) [Def of w € L(A) |

\ snd*(xg...Xy_1) = Ug...Up_1

for the following , each introduced variable x € pos(0sposex(F)) and w €
pos (0« posex(F))*

Ixo, Jwy, xowy € L(0+posex(F)), [prop. First |
Vie{l...n—1},
> 9 Iy, Fw;_q1, I, wi_1x;_1x;w; € L(0«posex(F)), [prop. Follow |

Xp_1,IW,_1, Wp_1x,_1 € L(0«posex(F)), [prop. Last |

\ snd* (xg...Xy_1) = Ug...Uy_1

For xq...x,_1 to be the word constrained by all definitions above, we have

Wy = €

/o
Wy = X1...Xp—1
w; = Xp...Xj—1

w; = Xj41..-Xpn-1

— Xg...Xp—1 € L(0eposex(F))
snd*(xo...xn_l) =Uy...Uy1

148 Appendix A. Proofs

.. Xy—1 € L((0+posex(F))*) [L(0«posex(F)) C L((0+posex(F))*) |

I

snd*(Xp1) = U Uy 1

I

snd*(Xp1) = U Uy q

..Xy—1 € L(posex(E)) |E=F*]

I

{ ..Xp_1 € L(posex(F*)) [def. posex |

snd* (Xp1) = U Uy q

= up...uy_1 € L(E) [lem. posex™1 |

om>1weL(A)

Jx € First(0«posex(F)), [A[03]]
Vie {k+1..n—1},
<~
Jx; € Follow((0+posex(F)),x;_1) [Asl62]]
X1 € Last(0eposex(F)), [we L(A)]
| snd™ (g xpo1) = U Uy
I, Jwy, xgw), € L(0«posex(F)), [prop. First |
Vie {k+1...n—1},
<~

3x;, Jw;_q, Fw!, wi_1x;_1x;w; € L(0«posex(F)), [prop. Follow |
Ix,,_1, Jw,_1, wWy_1Xy—1 € L(0«posex(F)), [prop. Last |

\ snd* (X ... Xp_1) = Up...Uy_q

For xp...x,_1 to be the word constrained by all definitions above, we have

A.2. Language preservation of Glushkov 149

Wy = €

[
wk — xk+1...xn71
W; = X ... Xi—1

[
W; = Xi41---Xp—1

..Xp—1 € L(0«posex(F))

X -
So,
snd® (Xg ... Xp_1) = Ug... Uy,

From induction hypothesis,

-1

X1 € L((0«posex(F))™) C L((0+posex(F))*)
we also have
snd* (x xk,l) = Ug...Ug_q
xg...x—1 € L((0«posex(F))™)
To sum up,w € L(A) <— Xg...Xy—1 € L(0sposex(F))
snd”* (xg ... Xp_1Xg - Xy_1) = UQ .- Ug_1Uf .. Uy_1
— o Xg_1Xg ... Xy—1 € L((0eposex(F))™) - L(0«posex(F))
Si’ld))< ..xk_lxk...xn_l) = Ug...Up_qUE ... Uy
- .. Xp_1 € L((0eposex(F))™+1) C L((0+posex(F))*)
ST’ICF< .. xn_l) = Ug...Uy_1
. ..Xy—1 € L((0eposex(F))*)
snd* .. xn_l) = Ug... Uy
..Xp—1 €L F*
— - (posex(£)) [def. posex |
snd* .. xn_l) = Ug...Uy—1
..Xp—1 €L E
. - Xn—1 (posex(E)) [E — F*]
snd” (x ..xn_l) = Uy... Up_q
— ug...u,_1 € L(E) [lem. posex™1]

150

Appendix A. Proofs

It was just proved that :

Vw € 2, w € L(A) = w € L(F*)

Is left to prove :

L(F*) =

Vw € 2, w € L(F*) = w € L(A)

(o9

UL(F) [def. Lie |

i=0

By induction on i

o LO(F) = {e}

e € L(A)

o L(F*1) = L(F'-F) = L(F!) - L(F)

w

-

(

= ug...u,_1,w € L(F") - L(F)

ug...Uy_1 € L(FY),
um...un_l 6 L(F),

(ug ... um—p)Uy—1 € L(F*)

U (U1 -+ Uy—1) € L(FY),
Vie{m+1...n—1},

(U .o)uj_qui(...uy_1) € L(F*),

(U« oo Uy—p)uy_q € L(F*)

3x,,—1 € Last(0«posex(F))
dx,, € First(0sposex(F)),
Vie{m+1...n—1},
Jx; € Follow(0+posex(F), x;_1),
Xy—1 € Last(0e«posex(F))

snd(Xy—1) = Upm—1

snd(xXy) = Un

snd(x;) = u;

(< L(A) C L(F"))

(< L(F") C L(4))

[prop. Last |
[prop. Follow |

[prop. Follow |
[prop. Last |

A.3. BSPA generation proof 151

¢

Ixm—1, (Xm—1 € *(8(qr, u0), 11 . . . U_1)) [IH]
w1 € F [TH A A.[F]]
) S(xpm_1,8nd(xm)) = xm [A[03]]
Vie{m+1...n—1},
dx; S(xi_1,snd(x;)) = x; [A[02]]
L Xn—1 € F [A*[P]]
— w € L(A)

We have proved L(A.) C L(F*) and L(F*) C L(A.).
So, L(A,) = L(F*)

Now that all cases were covered

A.3 BSPA GENERATION PROOF

Lemma 4 (dsn™1). VR® € (%, p) bspre®, Ym € N,Vj € {0...m —1},Vw! € " 354,
Vi€ [pl,wdo. .. wl i ma € L(dsni(Ro))
<~

(w8,...,w2_1>to (it ..,w?f_‘f),fmq € L(R°)

Proof by structural induction on R°.

152 Appendix A. Proofs

<« Viepl,uwlo... w" ma € L(e) [def . dsn |
<~ VZ € [P], ZU? ;tO “ee w;n_l ,'tmfl < {e} |: def LRE i|
— Vie [P]/wl 70 w:n—l spm-1 = €
<:> <w8/ . 7 w2_1>t0 [N <wgl_1, ceey wl’pﬂ:11>tm_1 = €
— <w8’ : ’w2—1>t0 T <w8171/ v /wg:11>tm—1 S {6}
— (w),. ,w??fl)to...(wgq*l, ,w?_’f)tm_l € L(e)
= (W, 0). (wh W) € L(R?)
Case R° =0

Vi € [p], ZU? 0. w;ﬂ_l spm—1 € L(dsni(®))

= Viepl,wlo.. . w" ma € L(D) [def . dsn |
<~ Vl c [p], w9 ;t() e w?’l*l ;tm—l € {} |: def LRE :|
<— 1

and

<w8,...,w2_1)to...(wgi_l,...,w’;__f)tmq €L(Q) < L

which is equivalent.

Case R°=(ro,...,7p-1)0

Vi€ [pl,wdo. .. wl i ma € L(dsni((ro,...,rp,ﬁo))

> Vie [p|,w] ;0 w:”_l;tm_l € L(rio) [def. dsn |
= Viepl, ... w" ma€L(r) L(o) [def. Lge |
= Viep, ... w" ma€L(r) o} [def. Lge |
— Vie[pl,wdoe L(r) {0} [m=1]
<« Vie[p],w) € L(r;)

— (wh, ,wg 100 € L({ro,. .., p-1)0)

OK

OK

OK

A.3. BSPA generation proof 153

Case R°=Rj+Rj
Vie [plwlo. .. w" L € L(dsn' (RS + RS))

1

= Viep,wdn. .. w1 € L(dsn' (RS) 4 dsn' (RS)) [def. dsn |

1

= Vie[p,wdn. .. w" € L{dsn' (RS)) U L(dsn' (RS)) [def. Lge |

We have
o Vi€ [pl,udso... w1t € L(dsni(R"))
= (W), wy). (wp'” L Wy m w1 €L(RY) [IH]
o Vi€ [pl,wo... w1 € L(dsn' (RO))
= (W), wy). (wp'” L W 1>tm 1 € L(R3) [IH]
Hence Vi € [p], w9 ;0... w11 € L(dsn'(RS)) U L(dsn' (RS))
= (w§,...,w%1>to <wg1_1 W), 11>tm 1 € L(RS) UL(RS)
= (wp,.., Wy). (wg ", wy T) € L(RY +R3) [def. Lie |
OK
Case R°=Rj'Rj
Vi e [p],wd;p. w}”‘l ;-1 € L(dsn' (RS - RS))
= Viepl, w0 .. w0 € L(dsn' (RS) - dsn'(RS)) [def. dsn |
= Vie[p,wdn... w" € L(dsn'(RS)) - L(dsn'(RS)) [def. Lge |
dn,0<n<m
o Vi€ [pl,w;p0... w1 € L(dsn'(RY))
— <w8,...,w2_1>to...<wg1_1,. LWy Y1 € L(RY) [IH]
o Vi€ [pl,wll. .. wl' ma€ L(dsn’(Rg))
— <w8,...,w271)to...<w6”_1,. LWy D1 € L(RS) [IH]
Hence
Vi€ [pl, w0 .. wl i awtt w1 € L(dsn' (RS)) - L(dsn'(RS))
<~
<w0 wP > <wn71 wn71><wn w" > <wm71 wm—l) c L(RO) . L(RO)
ow-; p—10-'- 0 e p—lm(i’ Wy—1 0 s Wp 1 2
= (wy,..., wy_q)...(wg ..., w)'}) € L(R° R3) [def. Lig |

OK

154 Appendix A. Proofs

Case = (R})*
Vi e [p] w0 WL € L(dsn' ((R9)¥))
= Vie[pl,wde. .. w0 € L(dsn'((RS))*) [def. dsn |
m
1

= Viep,w)o.. w1 maE LgLf(dsni(Rf)) [def. L |
P

We prove first Vj,Vi € [p], w0 ... w" 1 ;1 € Li(dsn' (RS))

1

<w81"'1w2_1>t0...<wg1_1,. p 1>tm 1 € L](RO)

by induction on j.
0o j=0
LO(dsn'(R)) = {e} OK. [See case R° = €]
oVj>0
Vi€ [pl,wi . w§”‘1 ;o € L (dsn' (RS)
n

<~ Vl € [p] : ,tO w;n_l spm—1 € L(S

(7)) - L= (dsn (RS)
L)

< In,0<n<mVie [p],{wz": -w N - 1€L(di”(?)
mo W e € LT (dsn' (RY))
e In0<n<m {<w8z---fw2_1>t wp W~ “Dw1 € L(R}) [outer proof IH |
, , (wg, - "wgf1>t" e (wg“l, Z 11>tm71 eLi- 1(RT)[inner proof IH}
< Jn, <w8/---rw2_1>t0---<w3z---/w2_1>t"---(wgq_l, ..,w?j_‘f)tm,l € LJ(R?)
= <w8,...,w2_1>to...<w81_1,...,w’;1:11>tm,1 € LJ(RY)

Thus, we have

Vj, Vi€ [p],w?;p0. € L (dsni(Rf))

1

— (wp,.. -pr71>t0 e <w81_1,...,wz1__11>tm71 € LI(RY)

VZ S [p] / /to wm_l ;tmfl € QU(dsnl(Ro))
A <w81---,wp_1>t0...<ZU81_1,.. Wy D € UL](RO)

— (wgl...,w&l)to...<w6”’1,...,w’;1:11>tm_1 € L((R})*)

Lemma 5 (annot!). VR € (X, p) bspre, Vm € N,

Vj € [m], 3, (wh, .. .,w2_1> 0 ... (Wit Wy 11 € L(annot(R))
— <w8,...,w2_1> A(wi 1, Wy Y € L(R)

A.3. BSPA generation proof 155

Proof

We prove this equivalence by proving the two implications

Vj € [m], 38, (wf, ..., wd). (wp W)) e € Lannot(R))
— <w8,...,w2_1> <w87_1,...,w’;’:11> € L(R)

Let function unannot the function removing annotations of the vectors in a BSPRE.

def 5.1 unannot : (X, p) bspre® — (X, p) bspre

unannot(Ry + Rp) = unannot(Rq) + unannot(Ry)
unannot(Rq - Ry) = unannot(Rq) - unannot(Ry)
unannot(Ry) = (unannot(Ry))*
unannot({ro,...,7p—1)t) = (ro,. .-, Tp—1)
unannot(€) = €
unannot(®) = @

This function is defined so that the following property holds.
prop 5.2 R = unannot(annot(R))

Indeed function annot only annotate vectors in the BSPRE with a unique identifier. It

does not modify vectors content nor BSPRE structure (def. annot). This is enough to prove
prop. 5.2.
We also introduce the same function operating on words (symbol list).

def 5.3 unannot_word : ((Xre vec) x IN) list — (X re vec) list

unannot_word((wo, ..., wp—1)¢ :: W) = (wo, ..., wp_1) :: unannot_word(W)

unannot_word([]) = []

The two functions defined above allow us to write the following implication which is
true for any annotation ¢ because annotations are removed from both the language with
unannot and from the word with unannot_word.

(W), ..., 2 Do o (Wit W, “m1 € Lannot(R))
= unannot_word ((wp, ..., w) ;)0 ... (wg’l,...,w;”:f)tm 1) € L(unannot(annot(R)))

Whose right-hand member may be reduced

Appendix A. Proofs

156

unannot_word ((wg, ..., w) 1)) ... (wy' ™~ Lo LW "1y m1) € L(unannot(annot(R)))
— (W), .. ,wg e w ’;111 L (unannot(annot(R))) [def. unannot_word |
— (w),... ,wg D@ w ;”11 L(R) [prop. 5.2]

By replacing the reduced right-hand member in the original implication, we have vt/

(w8,...,w2_1>to <wg1_1,...,w’; 11>tm—1 € L(annot(R))
— (w8,...,w271> o (wp ,...,w’;) € L(R)
OK

0

Vj € [m],3t, <w0,...,w2_1)to o (i ...,w?_‘f)tmq € L(annot(R))
0 0
p—1

-1 -1
== (wy,...,wy q) ... (wy ..,wﬁl)GL(R)
Quantifier “3t” allow us to pick the right annotation for all m vectors, thereby reflecting
any annotation of annot(R) in the BSP word. This implication is thus trivially true
OK

The two implications were proven thereby proving the equivalence of lem. 5

A.3. BSPA generation proof 157

Conjecture 1 (Language preservation). VR € (%, p) bspre,

L((Sync o BK? o Dsync)(R)) = L(R)

Proof
By induction on R.

Cases R = R;:Ryand R = Rj are yet to be proved.

Nonetheless, the application of parallel matching for regular expression only uses a
disjunction of vectors, (i.e. R = Ry + Rz | (ro,...,7p—1) | @ | €) which makes the current
proof sufficient for this application.

Case R=0: L(R)=L(®)=®
A = Sync(BKP(Dsync(D)))
A = Sync(BKP(Dsn(annot()))) [def. Dsync |
A = Sync(BKP(Dsn(®))) [def . annot |
A = Syn(BKP((®D,...,D))) [def . dsn |
Q=aqr Q=aqr
X=0 =0
A=Syn({| 6= soes | 0=0)) [From A, |
I'= {41} I'={q1}
F={} F={}
(Q)iep = ZHOW}}
y =0
A= \ielp) = ?1 [def. Sync |
(F)icy = L{a})
(Ficp) = @
A =Q

158 Appendix A. Proofs

Remark 1.1. The BSPRE @ is different from (@, ..., @) . In the latter case, the BSPA outputted
would have 2p states with p states in I, no final states and a delta transition from I to the
other states. This case will be covered in R =<ry,...,7,-1 >.

A.3. BSPA generation proof

159

Case R=¢€:
A = Sync(BKP(Dsync(e)))
A = Sync(BKP(Dsn(annot(€))))
A = Sync(BK?(Dsn(e)))
A = Syn(BKP((e,...,€)))

Q=4 Q=4
=0 X=0
A=sy((| s6=0 |,....] 6=0 [)
I={qr} I={q}
F = {q1} F = {q1}
(@ ey = LT(41))
pa =Q
o (0iey) = fil
(I e = go({fﬁ})
(Ficip = LI({q1})
A =0

[def. Dsync |
[def . annot |
[def . dsn |

[From A, |

[def. Sync |

(INiey) = (Fiepy) = L(A) = {e} = L(R)

Remark 1.2. The BSPRE e is different from (g, ..., €) . In the latter case, the BSPA outputted

would have 2p states with p states in I, p states in F and a delta transition from I to F. This

case will be covered in R =<rg,..., 7,1 >.

160 Appendix A. Proofs

Case R = (ro,...,7p-1): L(R) = L(ro) x - -+ x L(rp—_1)

Deyne((ro,-.., 7y 1))

Dsn(annot({r, ..., rp-1))))) [def. Dsync |
Dsn((ro,...,Tp-1)0))) [def. annot |

(1050, ---,7p=170))) [def . dsn |

jon}
~
<

Q = {41} Upos(0+posex(r;)) U{(1,50)}

Y= {snd(x) | x € pos(O-posex(ri))} U{o}
(Va e {snd(x) | x € pos(O-posex(ri))},
B x € First(0eposex(r;))
oaqr a) = {x Asnd(x) =a }
6(q1.50) = {(L50)} - Null(0+ posex(r;))

T
L

Vx € pos(0e«posex(r;)),

= I = rom
A Sync(i:O ’ Va € {snd(x) | x € pos(o.posex(ri))},) [From 4,]
B y € Follow(0«posex(r;), x)
Oxa) = {y N;snd(y) = a }

Vx € Last(0+posex(r;)),
L 0(x,50) = {(1,50)}

I={qr}
F={(1)}

A.3. BSPA generation proof

161

p—1

(QDierp) = U{ai} Upos(0+posex(r;)))
Y= g{snd(x) | x € pos(O-posex(ri))}
(va e {snd(x) | x € pos(O-posex(ri))},
PN x € First(0+posex(r;))
- o a) = {x Asnd(x) =a }
<§i>i€[p] = lL:JO § Vx € pos(0e«posex(r;)),
4= Va € {snd(x) | x € pos(O-posex(ri))},
B y € Follow (0« posex(r;), x)
\ o(x.a) = {y Asnd(y) =a }
(e = U{g)
(e = U{(1)}
A= {(17—> ((L;0),---,(L0))) | g€ i}Lust(O-posex(ri))}
L(R) =L(A) <= (Yw e ((Z*)")*,w € L(R) <= w € L(A))
ow=¢€

€€ L(A) <= (I S (Fiepy] = L

€€ L(R) <= ee (L(rg) x---xL(rp_q)) <= L

= A((0" (g7, "), ..

p—1
< <5*(q?, wo),, ., 0f (q?*1, wP*1)> c I:(!Last(().posex(ri)) [From A }
Let uf)...u;i = '
p—1 xé = 5((73, uf)) € First(0+posex(r;))
= lIldvie 1. ..mi},xb = 0(xi_y,ut) € Follow(0«posex(r;), x;_,)

o w = (wo,...,wp_1> € L(A)

Lot wb) € (Y,

Xn, € Last(0«posex(r;))

[def. Sync |

[From <51>ZE[P]]
[From <5Z>i€[p] }

162 Appendix A. Proofs

)
V] S {1 o ﬂi}
- Jwl, xiwl € L(0«posex(r;)), [prop. First |
11 Elw;._l,EI'w;-’, w;_l?c;._lx.]’-w;’ € L(0+posex(r;)), [prop. Follow |
Jw, 4w, gx, g € L(0«posex(r;)), [prop. Last |
\ snd* (xh . ..xf,li_l) = uf)...ul,
(.
For xj ... x;ﬁl to be the word constrained by all definitions above, we have
_ w = xi ... xl
=) vie{0...n}, S
= 11 W)= Xy X
xh ... xl € L(0eposex(r;
So, we also have, Vi € {0...p — 1}, 0=l (P , (ri))
snd” (xp ... x, 1) = ug... Uy,

\

—Vic{0...p—1},u}. "”fu € L(r) [lem. posex™" |
> (wo, ..., wp_1) € (L(rg) X - -+ x L(rp_1))

< <ZU0,...,ZUP,1> c L(R)

o w = (wp, ... wp-1) - (W, ... w,_4) - w' € L(A)
To be accepted by A, at least two applications of delta are needed. The first application nec-
essarily leads to the state vector ((1,;0),...,(1,;0)) (see A). Then, there is no J-transition

coming from a state (1,9)’ or A-transition from this state vector. Hence, w ¢ L(A).

Concerning the belonging of w in L(R) = L(rp) x - -+ x L(r,_1), since the structure is not
the same, w ¢ L(R).
Is deduced Vw € ((£*)P)*,w € L(R) <= w € L(A), followed by L(R) = L(A).

A.3. BSPA generation proof 163

Case R=R;+R L(R) = L(R1) UL(Rp)
A = Sync(BKP(Dsync(R1 + Ry)))
A = Sync(BKP (Dsn(annot(Ry + Ry)))) [def. Dsync |
A = Sync(BK?(Dsn(R{ + R3))) [def. annot |
A = Sync(BKP({dsn’(RS 4+ R3), ..., dsnP"1(RS + R3)))) [def. Dsn |
A = Sync(BKP({dsn°(RS) +dsn®(RS), ..., dsn" " (RS) 4 dsn? 1 (R3)))) [def. dsn |

Q = {4} } U pos(0+posex(dsn'(RS))) U pos(1 « posex(dsn'(R3)))

[{snd(x?) | x € pos(0- posex(dsn(R;)))}

U {snd(") | x' € pos(1+posex(dsn' (RO)))}

(Va € {snd(x) | x! € pos (0« posex(dsn’ (Ri’)'))}/
) = ([(O posn)

Va € {snd(x') | xi € pos(1-posex(dsn(RS))},
(g1, a) — { ' € First(1- posex(dsn (R3))) }

Asnd(x') = a

stn -

h
L

Vxl e pos(O-posex(dsni(RT))),
Ya € {snd(xi) | Xt e pos(Ooposex(dsni(Rf))},
i . i/po i
5(xia) = {yi y' € Follow(0«posex(dsn'(RY)), x") }

Asnd(y') =a
Vx' € pos(1+ posex(dsni(RS)))
Va € {snd(B | x' € pos(1«posex(dsn' (RS) }

Py y' € Follow(1+posex(dsn'(R3)), x")
\ o) = {]/ Asnd(y') =a }
I={q}}

(if Null(0+posex(dsn’(RS))) U Null(1 .« posex(dsn’(R3))) = {e
F = {g%} U Last (0« posex(dsn’(R$))) U Last (1 « posex(dsn' (RS
otherwise Last(0posex(dsn'(RS))) U Last(1 « posex(dsn' (RS

- Sync(Odsn =

I
=}

}
)
)

\

[From A, |

Appendix A. Proofs

Va e {snd(ORES

5(q,a)
Va e {snd(xi) | x

5(qy,a)

Va € {snd(xi) |

(i) = U{ai}

[def. Sync |

p-1 {snd(B | x' € pos(0«posex(dsn’ (RS))

[
[

vxi c pOS(O -pOSEX(dSni(RT)))’

5(x',a) = {yi

V' € pos(1«posex(dsn'(R3))),
Va {snd(xi) | x' € pos(1 -posex(dsni(Rg))},
|y € Follow(1 « posex(dsn'(RS)), x') }

Mﬂwzﬁl

({ql} U pos (0« posex(dsn'(RS))) U pos(1 « posex(dsn

\ &

U {snd(B | &' € pos(1«posex(dsn’ (R3))

€ pos(0« posex(dsn’ Ro) ,
x' € First(0«posex(dsn' (R
A snd(x') = a

Asnd(x') = a

x' € pos(0 « posex(dsn' (RS))},

Asnd(y') =a

A snd(y') = a

) }

i € pos(1 -posex(dsni(RE)))}'
x' € First(1+posex(dsn'(RS))) }

y' € Follow (0« posex(dsn'(RS)), x*)

'

| o [if Null.(O-posex(dsni(Rf))) U Null(1«posex(dsn'(RS))) =
(Fiep) = L:JO {44} U Last (0« posex(dsn’ (R$))) U Last(1 « posex(dsn' (R
otherwise Last(O-posex(dsni(Ro))) U Last(1 « posex(dsn’(
p—1
i € LIat 1 6'(ah) = a5,
A=Vie pa{l 1 ! i) =
v € b | 6'(qt,0) = a4},

\ U ((g,5) =19

SHES

{e}
2)))
R3)))

A.3. BSPA generation proof 165

<Qi>i6[p] = Q)({qg} Upos(O-posex(dsni(Ro))) U pos (1« posex(dsn (
s _ 101 {snd(B | x* € pos(0«posex(dsn' (R?))) \Y
=0\ U {snd(B | x* € pos(1«posex(dsn' (R3))) \f
(Va e {snd(B | x* € pos(0« posex(dsn' (R?)) \ .7,
. , First(0. d
5(qi,a) = {xl J/C\SEnd(zrs)(posex(dsn' (R))) } (5]
Va e {snd(xi) | x € pos(1«posex(dsn'(}\Y,
i+ | i|x" € First(1. posex((R;)))
s = {1 S it b
(e = U V! € pos(0«posex(dsn'(RY))),
s Va e {snd(xi) | x' € pos(Ooposex(dsni(Rf))} \ <,
A= . | |y € Follow(0+posex(dsn'(RS)), x*)
ox'sa) = {y A snd(yi) =a } [53 }
V' € pos(1«posex(dsn'(R3))),
Va € {snd(xi) | x' € pos(1 «posex(dsn’ (RS))} \ .7,
.+ | .|y € Follow(1+posex(dsn'(R3)), x')
\ (5(3(,61) - {y /\Sﬂd(yi) — 2 } [54]

p—1

(Micpy = Udai}
if Null(0« posex(dsni(RO))) UNull(1 posex(dsni(Rg))) = {e
{g%} U Last(0«posex(dsn’(RS))) U Last(1 « posex(dsn' (RS
otherwise Last(O « posex(dsn'(R$))) U Last (1 « posex(dsn' (RS

p—1

(Fiepp = U

i=0

1
)
)

A=V;e.”, p—1
v € LT1{qh | o(qh,) =
L(A)=L(R) <= (VweX*,we L(A) <= w € L(R))

Distinct cases on |w| are considered

Vi € H{ch | 6%(a35t) = 4 }
7y

7

olwl=0—>w=¢€

[y

66 Appendix A. Proofs

e € L(A)

< Vi€ [p,q €F

<= Vi€ [p], Null(0+posex(dsn'(R$))) U Null(1«posex(dsn'(R3))) = {e} [def F,qr ¢ last]

<= Vi€ [p],e € (L(0+posex(dsn’'(RS))) U L(1+posex(dsn'(RS)))) [prop. Null |

<= Vi€ [p],e € L((0+posex(dsn’(RS))) + (1+posex(dsn’(RS)))) [def. Lie |

< Vi€ [p],e € L(posex(dsn'(RS)) + dsn'(R3))) [def. posex |

< Vi€ [p],e € L(posex(dsn' (RS + RS))) [def . dsn |

— Vi [p],ec L(dsn' (RS 4 R3)) [rmk. e € L(posex™1)]

< €€ L(R}+R3) [lem. dsn™!]

< €€ L(R1+Ry) [lem. annot ™1 |

— ecL(R) [R=R;+R,]
o fwl=1w=(ud...ud% ,, ,ugil..uz;,ll_ﬁ € L(A)

= vie[plIn, (g ub..ul,), {i<;§io€l’1—;i. S) = ()

Different cases are considered according to membership of each word’s first symbol of the

word vector w.
Vi e [p],

> if n' = 0 (this case is treated here because x;i belong to First and not Follow as in the
following cases)

i

= uy...u, =€
= Hxn,,A(<) = <“.,x7.1”)/\x € F
<—— d;;€ .7, Hxn,,
(.
{42 | 5dsn(1//1‘> = qlz} [[A]]
x - € Last(0+posex(dsn'(RS))) U Last (1 « posex(dsn' (RS))), [x, € F,xl, #qr]

S y,ﬂxn,-,

(

X e First(0«posex(dsn'(RS))) U First(1« posex(dsn'(R3))) [6" from q |
§ snd(x) = (0]

xi . € Last(0«posex(dsn'(RS))) U Last(1 « posex(dsn' (RS))) [x;i €F, x;i £ q; |

<— d;€ .7, Hxn,,

A.3. BSPA generation proof 167

30!, x v’ € L(0+posex(dsn'(RS))) U L(1posex(dsn'(R3))) [prop. First |
', w'x!, € L(0 « posex(dsn' (RS))) U L(1 « posex(dsn' (RS))) [prop. Last |
snd*(x!) = ;i

— Je.7, 34,

{x;i € L(0+posex(dsn'(R2))) U L(1« posex(dsn’ (RS))) [Ui =€]

snd*(x;i) =

> if n' >0Aul€ {snd(xi) | x' € pos(O-posex(dsni(RT)))} \ &
(Vjie{l...n;—1},
Ixl) € First(0«posex(dsn'(RS))), [[61], uf) membership |
dxl € Follow(O-posex(dsni(Ri’)),x;'-fl), [[62], x}_) membership]

snd* (xby...xl,) =ub...ul

<:><E|;t€47,) "
Xy € {5111 | Ol (015t) = qlz} [[A]]
X € {qé | Ok (@1,5) = qi} [[A]]
\ x;i € Last(0+posex(dsn'(RY))), [qui c F,qu,- £qr]

)
\V/je {1...”1'_1}/

Jx € First(O-posex(dsni(Ri’))),
Elx;- € Follow(0« posex(dsn'(R?)

= q 1, € Follow (0« posex(dsn' (R?)
x;,- € Last(0+posex(dsn'(RS))),

3; € .7, snd(x;i) =t

X),
i

)
), X), [[A], case First already treated |

* (0 i — i
| snd (XG-- Xy q) =Up... 1y

(Vie {1...n;—1},

i

I}, Fok, xiol € L(0«posex(dsn'(RS))), [prop. First |

'Elx;'., 3@},1,3?} | w;'-ilx;;l’x;:z.); € L(O-posex(dsnli(Rf))), [prop. Follow |

= 3, T, T, w x xlvl € L(0eposex(dsn'(RY))), [prop. Follow |
Elw;,-, w;jx;,- € L(0«posex(dsn'(RS))), [prop. Last |

€S, snd(xl,) =

% (o iy i
| snd (X0 -2 1) = Up. Uy

168

Appendix A. Proofs

For xq. ..

So, we also have, d;; € ., Eixé .. x};i, [

x,i to be the word constrained by all definitions above, we have

' wh = xb . xl
V]E{Onl}, Z ? J 11
vi=xb .,

i

xh... qui € L(0 -posex(dsni(Rf)))
snd(xg...xp,) = uh..

> if n' >0Au)€ {snd(xi) | x' € pos(l-posex(dsni(Rg)))} \ .7,
For the same symmetric reasons, we have

El;tey,ﬂxé...x;., ,

xb...xh € L(1+posex(dsn'(R3)))
| snd(xfy...xl,) = ué...u;ﬁl St

> Hence, considering the global language of the BSPA, taking a A-transition entails that

every desynchronized local transitions take the same label ‘;;’". So it is not Vi € [p],3;: €
S,...but3de s Viep)],....

11

d;pe S, Vie [p],Ele) . ..xf,li_l,
Xy... X, € (L(0+posex(dsn'(RS$))) U L1« posex(dsn' (RS))))
A snd(xfy...xl,) = uf)...u;ﬁl it

3;p€ .S, Vi€ [p],Ixg...xh

Xy... X, € L(0+«posex(dsn' (RS)) + (1+posex(dsn’(RS)))) [def. Lig |
A snd*(xé...xﬁli) = ué...u;i,l ot
3, € Vi€ [p], 3. .. x;i,l,

xb...xt € L(posex(dsn'(RS) +dsn'(RS)))) [def. posex |

I/li—l
\/\ snd”(xp ... xp,) = U .o Uy gt
3 €., Vi€ [p], Ing...xh 4,

(

xbh...xt € L(posex(dsn' (RS + R3))) [def . dsn |

ni—l

% (i i\ g i
\/\ snd (XO"'xni)_uO"'uni—l’t

3 € .7,V € [pluy...ul, 1€ L(dsn' (R} + R3)) [lem. posex ™]
3 S (o ub. ...t € L(R{ + R3) [lem.dsn_l}

l’ll'—l’

A.3. BSPA generation proof 169

< we L(Ry+Ry) [lem. annot ™]
<= w e L(R) [R=R;+R; |

olwl=mm>2,w=wy... wy
The first BSP vector is explicitly shown for taking initial state into account and
differentiating the cases according to the membership of the first letter (as in

thm. Glushkov preserves language proof) and the last for using final states.

1 p-1 1 p-1

= w=(ag...ak_, -0 e (e ul o ug e uh T) € L(A)
. 1 1
Vi€ pl, 3, | €™ (qhal...al,), A2 .2) = (2,2),

o . ; N 1 1
= 3 e Vielpl, Iy, €8z, by by), AYR oY) = (- ,yf,, 1)

Vi€ [pl,3xt; | €0 (qp up. .l), A(xgo_l,...,xZ%Ll) = (xgo,...,xz L), X €F

> ifal € {snd(xi) | x' € pos(O-posex(dsni(Rf)))} \ 7
(vie (1. .k—1},

Izl € First(0+posex(dsn'(RS))), [[61], al) membership |
Elz € Follow(0« posex(dsn'(R?)), z] e [[52],z§_1 membership |
snd*(zo .. 'Zfi,-—l) = ”0 .. .a;‘qﬁl,
dne S,
2, € {ah 0l (alin) = ab} [8]
e {ah 1 0, (dhn) = gi [8]
- :
Vie{l...n;—1},
Jx € Follow(O posex(dsn'(R$)), q5), [g0 # ql, [6,], uly membership |

Elx € Follow(0«posex(dsn'(RS)), x;fl), [6], Xi_y membership |
snd*(x0 Xy) = ub... Uy 1/
d;m e S,
e {al 1 B gim) = a5} [[8]]
e {ah | Gl gl im) = db) [18]]
xn,- € Last(O-posex(dsn (RY))), [x;i € F, x;i #qr }

170 Appendix A. Proofs

Vje {1...k1‘—1},

Izl € First(0+posex(dsn'(RS))),

3z} € Follow(0« posex(dsn'(RS)), 2! z_q),

zi; € Follow(0«posex(dsn'(R})), 2L,), [[A], (case First already treated in m = 1) |
d;p€., snd(z kl) ;i

* (0 i | i
snd”*(z(. . 'Zki—l) =dp.. a4

Vie{l...n;—1},

Ixl) € Follow(0«posex(dsn' (RS
Jxt € Follow(O-posex(dsni(Ri’)),x;'-fl),
. € Follow(0«posex(dsn'(RJ)), x'
X € Last(0 « posex(dsn' (RS
J;me S, snd(x;,-) = ;m

| snd™ (xh...x,) = upy...u

)
V]'E {1...ki—1},
3zi, 30l zf)vg € L(0+posex(dsn'(RS))), [prop. First |
321 Elw] 3 ;, | ; .12] 12] i€ L(O-posex(dsnli(Rf))), [prop. Follow |
3z k,,EIw 30, w2 zhol € L(0.posex(dsn'(RY))), [prop. Follow |
30 €7, snd(z;{i) =;p

* (0 i — Al i
snd™(zy...zp 1) =ap. . a4

Vje{l...n,-—l},

Ixi, Jw' |, o, w' ghxiol € L(0+posex(dsn'(RS))), [prop. Follow |
ElxZ Elw] e ;, wj-_l ; , ; ; € L(0+posex(dsn'(RS))), [prop. Follow |
Jx I,Elwnl 30, Wl X x ol e L(0«posex(dsn'(RS))), [prop. Follow |
', wh ol e L(0+ posex(dsn'(RS))), [prop. Last |
d;m € .7, snd(x;i) = ;pm
| snd" (x... x5,) = Uy, 4

Thus, let [; the length of the whole desynchronized local word i

A.3. BSPA generation proof 171

VjE{O...ki...li—ni...li},

i i i i
j>li—n; — %0 Zkpt M X
i i i
i i i i i(po
Zy- - Zp - XXy, € L(0eposex(dsn’(RY)))

Thus, Vje{1...m},5|,'t,-€Y,Ele)...x;'l,,, , ,
snd(zé...zki...xo...xni) =AUy
> if af € {snd(xi) | x' € pos(loposex(dsni(Rg)))} \ .7,
For the same symmetric reasons, we have
Vie{l...m},3;,;¢€ f,ﬂzé...zii...xf)...x;i,
ZhooZh e X Xy, € L(1«posex(dsn'(R3)))

snd(zy ... zp - XpXp) = Ahp Uy e

> Hence, considering the global language of the BSPA, taking a A-transition entails that
every desynchronized local transitions take the same label “;;’. So again, it is not Vi €
p),3€S,...but3;; € L, Viep],....

— Vje{l..m}, 3,7 Vielpl,Izh...5, ... x... X,

ZhooZh e Xy Xy, € (L(0+posex(dsn'(R$))) U L(1 « posex(dsn'(RS))))

i

i . | . .
xni)—ao...,tl...uo...,tm

A snd*(zh...zp .. xh
<~ Vje{l...m},3;,€ S Vie [p],EIzé...z;{i...xé...x;i,
ZhooZh e X Xy, € L(0+posex(dsn'(R3)) + (1+posex(dsn'(RS)))) [def. Lge]

* (0 i — . i .
A snd (zg. .. zp X X)) = Ay U e

<~ Vje{l...m},3;,€ L Vie [p],ﬂzf)...z};i...xé...xfii,
ZhooZh e X Xy, € L(posex(dsn'(RS) + dsn'(RS))) [def. posex |

Aosnd (Zh. ..z X X)) = Ah . U

172 Appendix A. Proofs

— Vje{l...m},3;,€ S Vie [p],ﬂzé...z};i...xé...xni,
zh.. .zf(i Loxhxh€ L(posex(dsn' (RS + RS))) [def. dsn |

A snd*(zg...zfq...xé...x;i) =al...n. . ub.

= Vjie{l..m},3;€ S Ni€plal...;n...ul..;m€ L(dsn' (RS +R3)) [lem. posex ™]

— Vje{l...m}, 3, w} ... wih € L(R; +R3) [lem. dsn™']

«— wh...w" € L(Ry + Ry) [lem. annot ! |

— w'...w" e L(R) [R=R;+R;]

BIBLIOGRAPHY

[1] V. Allombert, F. Gava, and J. Tesson. Multi-ML: Programming multi-BSP
algorithms in ML. International Journal of Parallel Programming, 45(2):340—
361, Apr 2017. xvi, 87, 96

[2] Michela Becchi and Patrick Crowley. A hybrid finite automaton for practical
deep packet inspection. In Proceedings of the 2007 ACM CoNEXT Conference,
CoNEXT ’o7y, pages 1:1-1:12, New York, NY, USA, 2007. ACM. 20

[3] Justine Bonnot, Erwan Nogues, and Daniel Menard. New non-uniform seg-
mentation technique for software function evaluation. In 2016 IEEE 27th
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP), pages 131-138. IEEE, 2016. 73

[4] Mathias Bourgouin, Emmanuel Chailloux, and Anastasios Doumoulakis.
Profiliing High Level Heterogeneous Programs Using the SPOC GPGPU
framework for OCaml, 2017. LaMHA Presentation, 34 slides. xvi, 96

[5] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A scalable architec-
ture for high-throughput regular-expression pattern matching. SIGARCH
Comput. Archit. News, 34(2):191—202, May 2006. 26, 70

[6] Anne Briiggemann-Klein. Regular expressions into finite automata. Theo-
retical Computer Science, 120(2):197-213, 1993. Vv, Viii, 3, 32, 36, 37, 38, 130

[7] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481—494, October 1964. v, 3, 51, 67

[8] Pascal Caron and Djelloul Ziadi. Characterization of Glushkov automata.
Theoretical Computer Science, 233(1-2):75-90, 2000. Vii, iX, 27, 32, 51, 67

[9] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q Yan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krish-
namurthy. TVM: end-to-end optimization stack for deep learning. arXiv
preprint arXiv:1802.04799, pages 1-15, 2018. 72

173

174 Bibliography

[10] Yifeng Chen and J. W. Sanders. Top-down design of bulk-synchronous par-
allel programs. Parallel Processing Letters, 13(03):389—400, 2003. 18

[11] Renato J Cintra, Stefan Duffner, Christophe Garcia, and André Leite. Low-
complexity approximate convolutional neural networks. IEEE transactions

on neural networks and learning systems, pages 1-12, 2018. 73

[12] Murray I Cole. Algorithmic skeletons: structured management of parallel compu-

tation. Pitman London, 1989. 73

[13] V. Elango, N. Rubin, M. Ravishankar, H. Sandanagobalane, and V. Grover.
Diesel: DSL for linear algebra and neural net computations on GPUs. In
Proceedings of MAPL'18. ACM, 2018. 72, 91

[14] Adin D. Falkoff and Kenneth E. Iverson. The design of APL. IBM Journal of
Research and Development, 17(4):324-334, 1973. 73

[15] Jean Fortin and Frédéric Gava. BSP-Why: an intermediate language for
deductive verification of BSP programs. In 4th workshop on High-Level Parallel
Programming and applications (HLPP), pages 35-44. ACM, 2010. 19

[16] Z.Fu, Z. Liu, and J. Li. Efficient parallelization of regular expression match-
ing for deep inspection. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pages 1-9, July 2017. xi, 23, 24, 49, 50,

70

[17] Eric Goebelbecker. Using grep: Moving from dos? discover the power of
this linux utility. Linux J., 1995(18es), October 1995. xi, 49

[18] Yan Gu, Bu-Sung Lee, and Wentong Cai. JBSP: A BSP programming library
in java. Journal of Parallel and Distributed Computing, 61(8):1126 — 1142, 2001.
18

[19] Gaétan Hains. Enumerated BSP automata. In Editor Andrew Adamatzky,
editor, Emergent Computation. A Festschrift for Selim G. Akl, number 24 in
Emergence, Complexity and Computation, pages 233—268. Springer Verlag,
2016. v, 3, 13, 50

[20] Gaétan Hains, Arvid Jakobsson, and Youry Khmelevsky. Towards formal
methods and software engineering for deep learning: Security, safety and
productivity for DL systems development. In 2018 Annual IEEE International
Systems Conference (SysCon), Vancouver, Canada, 2018. IEEE. 72

Bibliography 175

[21] Gaetan Hains and Lenore M. R. Mullin. Parallel functional programming
with arrays. The Computer Journal, 36(3):238-245, 1993. 73

[22] Marc E Herniter. Programming in MATLAB. Brooks/Cole-Thomson Learn-
ing, 2001. 73

[23] Jonathan M.D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,
Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bis-
seling. BSPlib: The BSP programming library. Parallel Computing, 24(14):1947
— 1980, 1998. 18

[24] Jan Holub and Stanislav Stekr. On parallel implementations of deterministic
finite automata. In International Conference on Implementation and Application

of Automata, pages 54—64. Springer, 2009. xi, 23, 50, 66, 70

[25] Qiming Hou, Kun Zhou, and Baining Guo. Bsgp: bulk-synchronous gpu
programming. In ACM Transactions on Graphics (TOG), volume 27, page 19.
ACM, 2008. xvi, 96

[26] International Collegiate Programming Contest. World finals challenge,
problem B: Two-class binary neural network for handwritten digits.

myicpc.live/cdn/icpc-challenge-2019.pdf, 2019. 85

[27] Arvid Jakobsson, Frédéric Dabrowski, Wadoud Bousdira, Frédéric Louler-
gue, and Gaetan Hains. Replicated synchronization for imperative BSP pro-
grams. Procedia Computer Science, 108:535-544, 2017. iv, 2

[28] Yangqging Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Proceedings of the 22nd

ACM international conference on Multimedia, pages 675-678. ACM, 2014. 72

[29] N. Jouppi, C. Young, N. Patil, and D. Patterson. Motivation for and evalu-
ation of the first tensor processing unit. IEEE Micro, 38(3):10-19, May 2018.

xvi, 96

[30] Shijin Kong, Randy Smith, and Cristian Estan. Efficient signature match-
ing with multiple alphabet compression tables. In Proceedings of the 4th
International Conference on Security and Privacy in Communication Netowrks,
SecureComm ‘08, pages 1:1-1:10, New York, NY, USA, 2008. ACM. 21

myicpc.live/cdn/icpc-challenge-2019.pdf

176 Bibliography

[31] A Krizhevsky and G Hinton. Learning multiple layers of fea-
tures from tiny images. Technical report, Citeseer, 01 2009.
http:/ /www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf. 78

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097-1105, 2012. 78

[33] S. Kumar,]J. Turner, and J. Williams. Advanced algorithms for fast and
scalable deep packet inspection. In 2006 Symposium on Architecture For Net-

working And Communications Systems, pages 81—92, Dec 2006. 22

[34] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George
Varghese. Curing regular expressions matching algorithms from insomnia,
amnesia, and acalculia. In Proceedings of the 3vrd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS “o7, pages
155-164, New York, NY, USA, 2007. ACM. 20

[35] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and
Jonathan Turner. Algorithms to accelerate multiple regular expressions
matching for deep packet inspection. In Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, SIGCOMM ’06, pages 339—350, New York, NY, USA, 2006. ACM. xi,

21, 22, 49

[36] Richard E Ladner and Michael] Fischer. Parallel prefix computation. Journal
of the ACM (JACM), 27(4):831-838, 1980. 22, 70

[37] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park, Seong-Won Lee, Sunglk
Jun, and Young Soo Kim. A high performance NIDS using FPGA-based
regular expression matching. In Proceedings of the 2007 ACM symposium on
Applied computing, pages 1187-1191. ACM, 2007. xi, 50

[38] Xavier Leroy. Formal certification of a compiler back-end or: Programming
a compiler with a proof assistant. SIGPLAN Not., 41(1):42—-54, January 2006.

2

[39] Chong Li and Gaétan Hains. Sgl: towards a bridging model for heteroge-
neous hierarchical platforms. International Journal of High Performance Com-
puting and Networking, 7(2):139-151, 2012. Xxvi, 87, 96

Bibliography 177

[40] C.Lin, C. Huang, C. Jiang, and S. Chang. Optimization of Pattern Matching
Circuits for Regular Expression on FPGA. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 15(12):1303—1310, Dec 2007. xi, 50

[41] Frédéric Loulergue. Implementation of a functional bulk synchronous par-
allel programming library. In IASTED PDCS, pages 447-452, 2002. 73

[42] Frédéric Loulergue, Wadoud Bousdira, and Julien Tesson. Calculating par-
allel programs in coq using list homomorphisms. International Journal of
Parallel Programming, 45(2):300-319, Apr 2017. iv, 2, 19

[43] Frédéric Loulergue, Frédéric Gava, and David Billiet. Bulk Synchronous
Parallel ML: Modular Implementation and Performance Prediction. In In-
ternational Conference on Computational Science (ICCS), volume 3515 of LNCS,
pages 1046—1054. Springer, 2005. 18, 67

[44] Frédéric Loulergue, Gaétan Hains, and Christian Foisy. A Calculus of Func-
tional BSP Programs. Sci Comput Program, 37(1-3):253—277, 2000. 19

[45] D. Luchaup, R. Smith, C. Estan, and S. Jha. Speculative parallel pattern
matching. IEEE Transactions on Information Forensics and Security, 6(2):438—

451, June 2011. 24, 70

[46] Daniel Luchaup, Randy Smith, Cristian Estan, and Somesh Jha. Multi-byte
regular expression matching with speculation. In International Workshop on

Recent Advances in Intrusion Detection, pages 284-303. Springer, 2009. 24

[47] Chad R. Meiners, Jignesh Patel, Eric Norige, Alex X. Liu, and Eric Torng.
Fast regular expression matching using small TCAM. I[EEE/ACM Trans.
Netw., 22(1):94-109, February 2014. xi, 26, 50, 70

[48] Suejb Memeti and Sabri Pllana. Parem: A novel approach for parallel regu-
lar expression matching. In 2014 IEEE 17th International Conference on Com-

putational Science and Engineering, pages 69o—-697. IEEE, 2014. xi, 23, 50, 70

[49] Armelle Merlin and Gaétan Hains. A bulk-synchronous parallel process
algebra. Comput. Lang. Syst. Struct., 33(3-4):111-133, October 2007. 19

[50] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos. Implementation of
a content-scanning module for an internet firewall. In 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM
2003., pages 31—38, April 2003. xi, 25, 26, 49, 70

178 Bibliography

[51] Maleeha Najam, Usman Younis, and Raihan ur Rasool. Speculative parallel
pattern matching using stride-k dfa for deep packet inspection. Journal of
Network and Computer Applications, 54:78 — 87, 2015. 24, 26, 70

[52] Virginia Niculescu. Formal refinement of BSP programs with early cost
evaluation. In 1oth International Symposium on Parallel and Distributed Com-

puting, (ISPDC), pages 49—56. IEEE Computer Society, 2011. xiv, 19, 94

[53] Christine Paulin-Mohring. Introduction to the coq proof-assistant for prac-
tical software verification. In LASER Summer School on Software Engineering,
pages 45—-95. Springer, 2011. iv, 2

[54] J. Roesch, S. Lyubomirsky, L. Weber,]J. Pollock, M. Kirisame, T. Chen, and
Z. Tatlock. Relay: A new IR for machine learning frameworks. In Proceedings
of MAPL'18. ACM, 2018. Vi, 4, 72, 91

[55] R. Sidhu and V. K. Prasanna. Fast regular expression matching using FP-
GAs. In Field-Programmable Custom Computing Machines, 2001. FCCM ’o1.
The 9th Annual IEEE Symposium on, pages 227-238, March 2001. 25, 70

[56] R. Sinya, K. Matsuzaki, and M. Sassa. Simultaneous finite automata: An
efficient data-parallel model for regular expression matching. In 2013 42nd

International Conference on Parallel Processing, pages 220-229, Oct 2013. xi, 25,
50, 70
[57] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching with ex-

tended automata. In 2008 IEEE Symposium on Security and Privacy (sp 2008),
pages 187-201, May 2008. 21

[58] Thibaut Tachon, Chong Li, Gaétan Hains, and Frédéric Loulergue. Auto-
mated generation of bsp automata. Parallel Processing Letters, 27(01):1740002,

2017. 50, 59

[59] Ken Thompson. Programming techniques: Regular expression search algo-
rithm. Commun. ACM, 11(6):419—422, June 1968. v, Vii, 3, 27, 51

[60] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8), 1990. iii, 1

[61] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz.
Fast and memory-efficient regular expression matching for deep packet in-
spection. In Proceedings of the 2006 ACM/IEEE Symposium on Architecture

Bibliography 179

for Networking and Communications Systems, ANCS ‘06, pages 93-102, New
York, NY, USA, 2006. ACM. xi, 22, 49

[62] Djelloul Ziadi and Jean-Marc Champarnaud. An optimal parallel algorithm
to convert a regular expression into its Glushkov automaton. Theoretical
Computer Science, 215(1-2):69-87, 1999. 32

Thibaut TACHON

Génération automatique de code paralléle isochrone

Résumé :

Depuis la stagnation de la fréquence d’horloge des processeurs, I'accroissement de la puissance
de calcul a dépendu entiérement de I'accroissement du nombre d’'unités de calcul. Plus que la
difficulté algorithmique impliquée par I'écriture de tout programme séquentiel, la programmation
paralléle demande au programmeur de gérer de nombreuses unités de calcul, incluant leurs
taches et leurs interactions. Pour alléger le fardeau du programmeur, cette thése propose deux
approches différentes de génération automatique de code parallele. Le modéle paralléle isochrone
BSP possede des propriétés intéressantes telles que son modéle de colt qui en font la cible de
notre génération de code paralléle. Les automates et expressions réguliéres sont souvent choisis
pour modéliser les calculs séquentiels et leurs parallélisation devrait, & long terme, aboutir a de
solides fondations pour la génération de code paralléle. Pour notre approche principale, nous
développons la théorie des automates BSP avec leur génération et déterminisation. Cette théorie
est utilisée dans une nouvelle méthode pour la recherche de motif a l'aide d’expressions
régulieres. Notre autre approche propose un langage spécifique au domaine des réseaux de
neurones ou la composition fonctionnelle d’un petit nombre de primitives facilite le développement,
la maintenance et la définition formelle du langage par rapport aux approches existantes.

Mots clés : Programmation paralléle, BSP, génération de code, automate, expression réguliére,
réseaux de neurones

Automatic Generation of Bulk-Synchronous Parallel code

Abstract :

Since we are in an era of processor clock stagnation, computing power growth has been relying on
parallel computing. More than the algorithmic difficulty involved in any program writing, parallel
computing additionally requires the programmer to manage numerous processing units including
their tasks and interactions. In order to alleviate the parallel programmer’s burden, this thesis
proposes two different approaches for automatic parallel code generation. The bulk-synchronous
parallel (BSP) model provides good properties such as its cost model and is therefore chosen as
the target of our parallel code generation. Automata and regular expressions are often chosen to
model sequential computation and their parallelization will lead to a strong foundation for general
parallel code generation. For our main approach, we develop the theory of BSP automata with their
generation and determinization. This theory is used in a novel method for parallel regular
expression matching. As another approach, we propose a domain specific language for
programming neural nets where the functional composition of only a few primitives eases
development, maintenance and formal definition of the language compared to existing approaches.

Keywords : Parallel programming, BSP, code generation, automata, regular expression matching,
neural nets

(v \ M LABORATOIRE D'INFORMATIQUE -
Carr Yl Love FONDAMENTALE D'ORLEANS P
6 rue Léonard de Vinci NERSTEDOREANS

45067 Orléans

	these_tachon
	List of Figures
	Introduction
	A parallel world
	Make the parallel world a better place
	Gates to the parallel world
	BSP automata for regular expression matching
	Domain specific language for tensor computation

	Publications
	Organization

	Preliminaries
	Notations
	Type notations
	Functions

	Finite automata theory
	Word, alphabet and language
	Regular expressions
	Finite automata

	Bulk-synchronous parallel model
	Supersteps
	Cost model

	BSP automata theory
	BSP words and languages
	BSP regular expressions
	BSP automata

	State of the Art
	Bulk synchronous parallel model
	BSP programming
	BSP programs from specifications
	BSP computation semantics

	Efficient regular expression matching
	Sequential optimization
	Parallel optimizations
	Dedicated hardware

	From BSP Regular Expression to BSP Automata
	Desynchronization
	From regular expression to finite automata
	Synchronization
	Algorithm example

	Determinization of BSP Automata
	Local indeterminism
	Global indeterminism
	Problem statement
	Indexing

	BSPA determinization algorithm

	BSPRE for Parallel Matching of RE
	Parallel regular expression matching
	Sequential matching
	Parallel matching
	Input distribution
	Precondition

	From regular expressions to BSP regular expressions
	From tree-form regular expression to sequence set
	Algorithm overview
	Splitting the regular expression
	Splits distribution into vectors

	Experimental evaluation
	Context
	Results

	Conclusion

	Tensor Programming with BSP
	Introduction
	Related work
	Theory
	Data types
	Tensor primitives

	Abstract data types and expressiveness
	Type-shape system
	HTL
	Programming neural nets
	Parallel code generation and costs
	Conclusions

	Conclusion and Future Works
	All roads lead to BSP
	BSP Automata
	BSP tensors computation

	Roads continue in BSP
	BSP automata future
	HTL for deep learning

	Proofs
	Glushkov's properties
	Null
	First
	Last
	Follow

	Language preservation of Glushkov
	BSPA generation proof

	Bibliography

	OrleansWord4emecouv TACHON
	Résumé :
	Depuis la stagnation de la fréquence d’horloge des processeurs, l’accroissement de la puissance de calcul a dépendu entièrement de l’accroissement du nombre d’unités de calcul. Plus que la difficulté algorithmique impliquée par l’écriture de tout prog...
	Mots clés : Programmation parallèle, BSP, génération de code, automate, expression régulière, réseaux de neurones
	Abstract :
	Since we are in an era of processor clock stagnation, computing power growth has been relying on parallel computing. More than the algorithmic difficulty involved in any program writing, parallel computing additionally requires the programmer to manag...
	Keywords : Parallel programming, BSP, code generation, automata, regular expression matching, neural nets

